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1. Introduction 
In a thermoelectric material, heat can be transported or used to generate electricity based on the Peltier and 

Seebeck effects.  The efficiency of a thermoelectric device is traditionally described in terms of the extensive
a
 or 

system parameters such as hot and cold side temperature, length and area of thermoelectric element, and applied 

voltage or load resistance.  In only the most simplified cases (e.g. temperature independent thermoelectric 

properties) can this efficiency be computed analytically, where it can be shown that the thermoelectric figure of 

                                                
a
 Extensive refers to properties that depend on material sample size 
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merit z is the intensive
b
 material property of prime importance [1][or earlier chapters in this book][2, 3].  At the 

optimal electric current, z alone determines the efficiency. 

Although very instructive, such simplifications ignore the effect of thermoelectric compatibility in real 

thermoelectric devices.  The thermoelectric compatibility factor is the reduced electric current which is necessary to 

achieve the highest efficiency determined by z.  Because the compatibility factor changes with temperature while 

the electric current is constrained, the efficiency of a real device will be less than that calculated from z.  The effect 

of thermoelectric compatibility is most important for segmented thermoelectric generators, but it also affects the 

exact calculation of performance for all thermoelectric devices. 

To calculate the exact performance of a thermoelectric generator analytically, it is simplest to use a reduced 

variables approach which will separate the intensive properties and variables (such as temperature gradient, 

Seebeck coefficient, current density, heat flux density) from the extensive ones (e.g. voltage, temperature 

difference, power output, area, length, resistance, load resistance) [4, 5].  This approach allows a definition of a 

local, intensive efficiency in addition to the traditional system efficiency [6-9] as well as the derivation of the 

compatibility factor [5]. 

1.1. Definitions 

Consider the one dimensional ( =
d

dx
), steady-state, thermoelectric power generation problem, where (for 

now) only a single (n- or p-type) leg is considered. The thermoelectric material properties all vary with (absolute) 

temperature, T:  the Seebeck coefficient , the thermal conductivity , and electric resistivity .  In the following 

discussion, we will assume isotropic materials properties.  For anisotropic materials, the tensor representations of 

the materials properties and equations are required [7].  Positive electric current density, J > 0 and heat flux (heat 

current density) Q > 0 (with units of Watt/cm
2
) flows from Th to Tc (Figure 1). Positive electric field E and 

temperature gradient  is in the opposite direction of J and Q.  The subscripts h and c (lower case) denote the 

value at a particular (hot or cold side) temperature ( h = (Th), h = (Th) ).  

Tc

x = l               

x = 0              

J+, Q+

Th

E+, T

V+

V-

l

A

Thermoelectric

Material

, , 

 

Figure 1. Diagram of a single element thermoelectric generator.  The direction of positive variables is shown relative to 

the hot and cold side.  For positive Seebeck coefficient ( ), all of the variables are positive for a generator operating 

efficiently.  For negative Seebeck coefficient (  < 0), the electric current, field and potential (J, E, V) will be negative, or 

opposite to the direction shown. 

The electric current density is for a simple generator, given by 

                                                
b
 Intensive refers to properties independent of material sample size 
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(1) J =
I

A
  

where I is the electric current (Amps) and A is the cross sectional area of the thermoelectric element.  

The electric field is given by a combination of the reversible Seebeck effect and the irreversible effect of     

Ohm’s law.  Using the sign convention described above the electric field from a purely resistive element using 

Ohms law is E = – J.  The electric field produced by the Seebeck effect is E = T .  Combining the Seebeck and 

Ohm effects, gives the electric field at any position. 

(2) E = T J   

Similarly, heat is transported reversibly by the Peltier effect, Q = TJ  (where T  is the Peltier coefficient, 

related to  by the Onsager reciprocal relations [3]) and irreversibly by Fourier’s law Q = T  (using sign 

convention of Figure 1). 

(3) Q = TJ + T   

The Peltier effect is often considered a surface effect between two materials but the heat transported is a 

property of a single material [10]. 

In both cases (equations (2) and (3)) the irreversible and reversible effects are treated independently, and can 

simply be summed.  This treatment is related to Kelvin’s assumption [2]. The irreversible heat flow is further 

constrained by the steady-state heat equation 

(4) ( T) = T
d

dT
J T J 2  

where T
d

dT
 is the Thomson coefficient.  From equation (4), we see that the heat produced (or consumed) by the 

Thomson effect is transported away from (or toward) that location by the irreversible part of equation (3) as a part 

of T . 

The electric power density P (power produced per volume) is the product of the electric field E and current 

density J. 

(5) P = E • J   

Using the sign convention in Figure 1, a purely resistive element (  = 0) would require a negative electric field 

E = – J to make a positive current (+J) so that the power density P = - J
2
 is negative (electric energy consumed).    

The heat equation (equation (4)), which includes the Thompson effect can be derived by invoking the 

conservation of energy. The divergence of the heat flow should be compensated by the sources (or sinks) from the 

electric power generation (work). 

 (6) Q = P   

Substituting equations (3), (2), and (5) into (6) and evaluating J  and ( T)  will derive the steady state heat 

equation (4).  For the one dimensional problem,  

 (7) J = 0   

because there is no build up of electric current in the steady-state.  To evaluate ( T) , it is first noted that, in the 

power generation problem, there is a temperature drop at every point ( T > 0 , for thermoelectric material and 

electric and thermal contacts); thus, the temperature profile T(x) is invertible to a well defined x(T).  In this way, 

(T) (x(T),T) is defined and then the gradient of  is simply =
d

dT
T  (note the use of total not partial 

derivatives).  This gives: 

(8) ( T) = T
d

dT
T + T   
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2. Reduced Variables 

2.1. Relative current density 
For calculating and comparing generator properties it is most convenient to use a reduced variable in place of 

the actual current density J.  This is because the most efficient current density scales with the length of the 

thermoelectric element in the same way that T  does.  By dividing the two, a simplified expression for reduced 

efficiency is derived. 

Here we use is the relative (reduced) current density u, which is the ratio of the electric current density (J) to 

the heat flux by conduction ( T ) given by 

(9) u =
J

T
  

(again, T > 0 , for power generation).  The electric power density (from equations (2) and (5)) in terms of u is 

given by: 

(10) P = T( )
2

u u( )   

The heat flux density (from equation (3)) in reduced variables is: 

(11) Q = T uT +1( )   

The variation of u is governed by the heat equation (4).  For the one dimensional problem with cross sectional 

area A a constant, equation (4) combined with (7) gives (1/u) = T
d

dT
T J .  For this one dimensional 

problem we can substitute (1/u) =
1

u2
du

dx
, 
du

dx
=
du

dT
T , and J = u T  to give 

(12) 
du

dT
= u2T

d

dT
+ u3   

Again, the material properties , ,  can be functions of temperature. Notice that here we have removed all 

reference to the spatial coordinate x, so that u can be considered a function of temperature T only.   

2.1.1. Other representations of the reduced current 

The relative current density u =
J

T
 is the most instructive form of the reduced current.  Sherman [4] uses y 

= 1/u which simplifies the thermoelectric potential (equation (21)) but becomes ill defined for an open circuit 

generator, when J = u = 0.  For power generation, small u is of most interest, specifically 0  u  z/  (Figure 2).  

Other multiplicative factors of 
J

T
 are less instructive because u has the least variation in a thermoelectric 

generator and therefore allows the comparison of compatibility factors (equation (18)).  For example, the relative 

change (
du

udT
) of u is vanishingly small for small u (J  0, u  0): from equation (12)  

du

udT
= u T

d

dT
+ u

 

 
  

vanishes as u approaches zero.  Other forms of the reduced current such as u
z

 or i =
J

T
= Tu  [9] have non 

vanishing relative derivatives, e.g.  
di

idT
=
d

dT
+
1

T
+ i

d

dT
+

i

zT 2
 

 
  does not vanish as i approaches zero. 



5 

2.2. Reduced Efficiency 
Efficiency  is defined as the power produced divided by the power supplied to the system. The (infinitesimal) 

efficiency along the infinitesimal distance dx is the power produced (per cross sectional area) Pdx divided by the 

heat flux through, Q, or 

(13) =
Pdx

Q
  

In equation (13) dx is in the direction of the temperature gradient so dx =
dT

T
.  Substituting this with equations 

(10) and (11) into (13) gives  

(14) =
dT

T

u u( )

u +
1
T

  

The first term is recognizable as the infinitesimal Carnot efficiency, C =
T

Th
.  The reduced efficiency, r, 

defined by  = C r, is not an infinitesimal quantity. 

(15) r =
u u( )

u +
1
T

 

The reduced efficiency can be succinctly written in terms of u
z

 [5] when z 0, where z is the thermoelectric figure 

of merit 

(16) z =
2

  

If the current is non zero, u 0 ( J 0) and 0 , the reduced efficiency is simply written as 

(17) r =

1 u
z

1+
1
u T

  

Similar to u, the reduced efficiency r u(T),T( )  is simply a one dimensional function of temperature once an initial 

u is applied.  This allows the exact calculation of efficiency using a simple spreadsheet calculation (described 

below, section number?). 

2.3. Efficiency dependence on Current 
Whether in power generation or Peltier cooling mode, the reversible, useful thermoelectric effects compete 

with the irreversible Joule heating.  Because the linear effects are directly proportional to the electric current while 

the irreversible Joule heating is proportional to the square of the current, there is necessarily an optimum operating 

current to achieve the optimum efficiency.  The variation of reduced efficiency with u current (Figure 2, equation 

(15)) is analogous to the variation of the power output to the electric current:  At zero u current, there is voltage 

produced but neither power nor efficiency.  As u increases, the efficiency increases to a maximum value and then 

decreases through zero.  Past this zero-efficiency crossing where u =
z

, the Ohmic voltage drop is greater than the 

Seebeck voltage produced, and thus the power output and efficiency are negative. 
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Figure 2. Variation of reduced efficiency (equation (15) with relative current density, u.  The maximum efficiency is 

achieved at the compatibility factor, u = s.  For the plot, zT = 1, T = 0.1V similar to the values for (Bi,Sb)2Te3. 

The value of u which gives the largest reduced efficiency (equation (15)) is thermoelectric (power generation) 

compatibility factor s.  

(18) s =
1+ zT 1

T
  

For small zT, this can be approximated by  

(19) s
z

2
  

This largest reduced efficiency r(u = s) is given by 

(20) max r =
1+ zT 1

1+ zT +1
  

Thus, in the most general case ( , , , temperature dependent), the thermoelectric figure of merit z, is the 

material property that determines the maximum local efficiency.  This can be used to derive the definition of z as 

the local thermoelectric figure of merit.  

From equation (18) it is clear that the compatibility factor s is, like z, a temperature dependent materials 

property derived from the temperature dependent materials properties , , .  Thus s can not be changed with 

device geometry or the alteration of electric or thermal currents.   

If u  s then the efficiency is less than the maximum efficiency of equation (20).  Since u =
J

T
, there is 

some control over u from the applied current density J (traditionally regulated by a load resistance).  However, once 

u is selected at one point, it can not be adjusted in a thermoelectric element to follow the temperature variation of s 

(Figure 3),  because the variation of u is fixed by the heat equation (equation (12)). 

Conveniently, the variation of u within a thermoelectric leg is typically small. Since all segments in a 

thermoelectric element are electrically and thermally in series, the same current I = AJ and similar conduction heat 

A  flow through each segment.  When the electric current is near zero (J  0) the heat flow is very uniform 

( ( T) 0) so u is nearly constant.  For I  0, the conduction heat is only slightly modified by the change in 

temperature gradient due to the Thompson and Joule sources of heat (equation (4)).  Thermoelectric generators 

operating at peak efficiency typically have u that varies less than 20 % within all thermoelectric materials in the 

entire element (Figure 3).  
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Figure 3. Variation of relative current density, u with temperature for a typical thermoelectric generator.  The total 

variation of u within a material and the change at the segment interfaces is less than 20%.  The u shown is that which 

gives the highest overall efficiency.  For (Bi,Sb)2Te3 and Zn4Sb3, u is less than the compatibility factor s, while for the 

CeFe4Sb12 segment u is greater than s.  
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Figure 4. Local, reduced efficiency (using optimized u from Figure 3) compared to the maximum reduced efficiency (if 

u = s for all temperatures, equation (20)).  The difference is most substantial in the regions where u is most distant from 

s (Figure 3).   

To a reasonable approximation, u, once established, remains constant throughout the thermoelectric element 

[11].  Thermoelectric coolers, on the other hand, are typically driven with much higher u, up to u =  (  = 0) at 

the end being actively cooled. 

The actual reduced efficiency of a material depends not only on the maximum reduced efficiency (equation 

(20)) determined by z, but also on how close u is to s (Figure 2).  The actual reduced efficiency (equation (15)) is 

always less than the maximum reduced efficiency (equation (20)), because u, as determined by the heat equation 

(equation (12)) varies differently from the material property s, so they can not be equal at more than a few isolated 

points.  The difference between the maximum and actual reduced efficiency is largest for large differences between 

u and s.  This can be seen graphically in Figure 3 and Figure 4. 

 

2.4. Thermoelectric Potential 
For many expressions and calculations, it is convenient to use the thermoelectric potential , (with units of 

Volts) [5], which is related to the electrochemical potential  ( µ = q  with q the charge/particle).  The 

thermoelectric potential is given by  

(21) = T + 1u = T +
T

J
  

The heat flux Q containing both the Peltier and Fourier heat (equation (3)) is simply 

(22) Q = J   

Multiplying by A gives the heat flow U = AQ  in terms of current. 
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(23) U = I   

The electric field E containing both the Seebeck and Ohm effects (equation (2)) is given by 

(24) E =   

where equation (4) and (8) are used.  Thus the electric power density (equation (5)) produced is 

(25) P = J •   

3. Generator Efficiency and Performance 

3.1. Efficiency of a thermoelectric device 
Once the intensive (local) reduced efficiency is known at every point, the total system efficiency can be 

calculated.  Because efficiency is strictly a fractional quantity less than one, care must be taken to use the 

appropriate summation metric when calculating combined efficiencies.  

For a general energy conversion process, let U be the heat energy into the system and W be the work removed.  

By conservation of energy the heat energy out of the system is U W . The efficiency of such a system is.   

(26) =
W

U
  

3.1.1. Parallel efficiency  
For two thermoelectric elements thermally in parallel (such as a thermocouple of n- and p-type elements), the 

combined efficiency is a (weighted) average of the efficiency of both generators, weighted by the heat flowing 

through each generator. 

(27) 1&2,parallel =
W1 +W2

U1 +U2

= 1U1 + 2U2

U1 +U2

  

3.1.2. Series efficiency  
For two processes in series the heat out of system one is the heat into system two: U2 =U1 W1.  The 

efficiency of the combined system is the work from both systems divided by the energy supplied to the first system 

in the series 
1&2,series =

W1 +W2

U1

.  Combining these relations gives the summation rule for efficiencies in series. 

(28) 1 1&2,series = (1 1)(1 2)   

For many processes in series this becomes 

(29) 1 series = 1 i

i

  

By taking the logarithm of both sides, the product series can be changed to a summation, which in the limit of 

infinitesimally small steps becomes an integral.  For infinitesimally small i, we have ln(1 i) i  [3, 12]. 

(30) ln(1 series) = ln(1 i)
i

= i
i

  

Note that since series i
i

, it is best to refrain from identifying infinitesimally small i with d ; instead, it is 

simply a local efficiency. 

(31) series =1 exp local[ ]   
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Using the expression for the local efficiency in terms of the reduced efficiency (equation (14)), the overall 

efficiency of a finite segment can be derived using temperature T to define the integration path.  

(32) =1 exp r

T
dT

Tc

Th 

 
 

 

 
   

3.2. Single Thermoelectric Element 
A thermoelectric generator consists of a n-type element and p-type element connected thermally in parallel but 

electrically in series.  Often, it is simpler to compare the efficiency and performance of individual elements rather 

than n-p couples, for example, when one is selecting materials. 

3.2.1. Thermoelectric element efficiency 
The thermoelectric potential becomes a convenient integration variable for evaluating equation (31).  

Integrating the local efficiency (equation (13)) by substituting equations (22) and (25) becomes simply a function of 

the thermoelectric potential at the two ends of the process. 

(33) 
P

Q
dx

Tc

Th
= dx

Tc

Th
=

d

Tc

Th
= d ln( )

Tc

Th
= ln( )

Tc

Th
= ln h

c

 

 
 

 

 
   

Here the thermoelectric potential is a parametric function of T, because u is also a function of T (e.g. 

c = (u(Tc ),Tc )).  This provides a simple expression for the efficiency (equation (31)) of a single thermoelectric 

element. 

(34) =1 c

h

=
h

  

In terms of u and T this is 

(35) =1
cTc +

1

uc

hTh +
1
uh

  

The maximum efficiency of a thermoelectric element is computed by finding the initial u that maximizes 

equation (35) for a given temperature range (Th and Tc).  Once an initial u (for example uh) is established, all the 

other u(T) (for example uc) are defined by equation (12). 

3.2.2. Thermoelectric element performance 

With E = =
d

dx
 (equation (24)), the output voltage V = Edx = d = h c =  is  

(36) V =   

Because u =
J

T
, any current density J can lead to any u provided the appropriate temperature gradient is 

supplied.  The absolute magnitudes of J and T , for a given u, will depend on the length of the thermoelectric 

element l = x(Th ) x(Tc )  (Figure 1).  Integrating u =
J

T
, gives udT = Jdx .  Assuming a uniform element 

with constant cross sectional area (J(x) = constant) gives: 

(37) udT
Tc

Th
= Jl   
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Thus the heat flux Q (at any point) (equation (22)) can be rewritten 

(38) Q =
1

l
udT

Tc

Th
  

Similarly, the power output (work) per unit area (
W

A
= Pdx ) is the product of Qh (equation (38)) and 

efficiency (equation (34)) can be written 

(39) 
W

A
=
1

l
udT

Tc

Th
  

The design condition of maximum thermoelectric efficiency, sets the value of u(T) and therefore also  and 

.  Thus the heat flux and power output at maximum efficiency conditions are directly proportional to 1/l, and 

can be computed from equations (38) and (39) once l is selected.  Typically, l is a design variable set to work with a 

desired heat flux (see example below, section number?).   

The temperature variation along the length l(T) can be calculated from equation (37):  

(40) l(T ) =
1

J
u dT

Tc

T

  

3.3. Thermoelectric Couple 
The performance and output of the entire generator scales in a simple way with that of the thermoelectric 

couple. The performance of the couple, however is not simply the average or sum of the corresponding n and p 

elements. 

3.3.1. Thermoelectric couple efficiency 
For an n- and p- element in parallel (equation (27)) the efficiency of each segment (equation (34)) can be 

combined using the heat flow equation (23).  Since is the electric current I flows in the opposite direction in the n-

element compared to the p-element (Figure 6), we have In = Ip . 

(41) n& p =
p n

p n

  

In terms of u and T this is 

(42) = 1
p,cTc +

1

up,c
n,cTc

1

un,c

p,hTh +
1

up,h
n,hTh

1

un,h

  

For an n-type material operating efficiently, n, un, n, and n are all negative.  Finding the maximum 

efficiency of equation (42) requires optimizing the initial conditions for both n- and p-type elements (for example 

up,h and un,h). 

3.3.2. Thermoelectric couple performance 
The output voltage is the sum of the voltage from the two elements (equation (36)) 

(43) V = p n   

For a typical n, p thermocouple, the electric current through both elements is the same, but the relative 

contribution of heat flux is regulated by having different cross sectional areas Ap and An.  The maximum efficiency 

condition, which defines up(T) and un(T), requires a specific ratio of Ap/An. 
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Assuming the n-element and p-element have the same total length, the ratio of the cross sectional areas can be 

calculated by equating the currents (±I = JA). 

(44) I = JpAp = JnAn   

combining this equation with equation (37) gives 

(45) 
Ap
An

=
Jn
Jp

=
un ndTTc

Th

up pdTTc

Th
  

Incidentally, the most efficient area ratio is found from the most efficient up(T) and un(T). 

The above two equations ((44) and (45)) with equation (37) can be solved for I, in terms of the total area  

(46) Atotal = Ap + An   

to length ratio (regardless of whether the most efficient u are used). 

(47) I =
Atotal

l

up pdTTc

Th
un ndTTc

Th

up pdTTc

Th
un ndTTc

Th
  

Notice that once a u is selected the current is directly proportional to the Atotal/l ratio. 

The load resistance RLoad is traditionally used to adjust the current.  For given u , the load resistance can be 

calculated using the current from (47), combined with Ohm’s law and (43) to give: 

(48) RLoad =
p n

I
  

The current can be used to find the total heat flux and power produced by the thermocouple.  The combined, 

total heat flowing Utotal =Qtotal Atotal  is the sum of the heat flowing through each (n- and p- type) element 

(Up +Un = I p I n ), giving. 

(49) Utotal = I( p n )   

Using equations (26), (41), and (49) (or W = IV and (43)) the total electric power (work/time) is simply 

(50) W = I( p n )  

The temperature variation along the length l(T), which will have different variation for n and p elements, can 

be calculated from equation (40).  

4. Computation of Generator Performance 

4.1. Analytic Example using Constant Coefficients 
When , , , and therefore z, are constant with respect to temperature the performance of a generator 

operating at maximum efficiency can be calculated analytically.  The solution to equation (12) for u(T) in this case 

is 

(51) 
1

u 2 =
1

uc
2 2 T Tc( )   

where u(Tc) = uc is used as the (not necessarily most efficient) initial condition. 

With T = Th in (51), the efficiency (equation (35)) can be maximized with respect to the initial u condition (e.g. 

uh) to find the most efficient u(T):  
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(52) 
1

u 2 =
1

s(T)2
+ (T T)2 +

T

2
s(T)

 

 
 

 

 
 

2

  

 

where T =
Th + Tc
2

.  Note that when ( , , ) are constant with respect to temperature, z is also a constant but s is 

not. 
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Figure 5. Variation of relative current density, u compared to the compatibility factor s with temperature for a 

thermoelectric generator with , , , and therefore z, constant. 

  

For uh and uc this gives : 
1

uh
=

1

s(T )

T

2
s(T ) , 

1

uc
=
1

s(T)
+

T

2
s(T)   The resulting efficiency is given by 

(53) =
T

Th

1+ zT 1

1+ zT + Tc Th

  

This equation is normally derived starting with the extensive expression for efficiency [2]. 

For comparison, if the maximum reduced efficiency could be used (equation (20)), known as an infinitely staged or 

cascaded system, where u = s, the efficiency is given by [13]: 

(54) = 1
1 + zTc +1( )

2

1 + zTh +1( )
2 exp

2 1 + zTh 1+ zTc( )
1+ zTh +1( ) 1+ zTc +1( )

 

 

 
 

 

 

 
 
 

 

Equation (53) demonstrates the importance of the figure of merit when the compatibility factor is nearly 

temperature independent.  For real materials where , , , vary with temperature, it commonly desired to find an 

averaged Z (upper-case) [10, 14] to calculate the efficiency in place of z (lower-case) defined by equation (16).  It is 

the effect of the compatibility factor that explains why averaging works well in some cases (when s does not vary 

significantly) and not in others (when s varies by more than a factor of 2). 

 

4.2. Calculation of exact solution 
The methods typically used for the computation of efficiency are complex, requiring finite element methods 

that include both volume and surface terms using averaged material parameters [4, 6, 15-18].  By using the reduced 

variables, however, computation and optimization of segmented thermoelectric generator performance (including 

even contact resistances) can be performed with a simple spreadsheet type calculation.  Because u, once 
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established, can be represented by a 1-dimensional function of T, the generator efficiency can be calculated with a 

1-dimensional function. 

The thermoelectric properties ( , , ) are tabulated as a function of temperature.  For now, we need only the 

temperature drop desired across a material, not the physical length.  The length will be calculated later and the 

temperature drop allocated can be adjusted to coincide with a desired length if necessary.  In Tables I and II the 

properties are tabulated at a minimum of every 25K.   

 For computation, the differential equation (12) can be approximated by combining the zero Thomson 

effect (d /dT = 0) solution with the zero resistance (  = 0) solution [19, 20]. 

(55) 
1

un

=
1

un 1

1 2un 1
2 T T   

where  = (Tn) - (Tn-1) and  denotes the average of  between Tn and Tn-1. 

 

At the interface between two materials, where  may be discontinuous, the properties of both materials are 

tabulated at the same interface temperature ( T = 0,   0).  This allows the discontinuous change in u to be 

correctly calculated from equation (12) ( u u2T ).   

Using equation (55), u(T) can be calculated given an initial condition (uh is used in example of Table I).  The 

maximum single element efficiency is found by varying these initial u conditions and calculating the efficiency 

from equation (35) (or couple efficiency from equation (42)).   In Table I, the highest generator efficiency was 

found when uh = 3.62 V
-1

. 

Tables I and II demonstrate the process both with and without interface resistances.  Table I demonstrates the 

calculation of a segmented p-type element without contacts, while Table II demonstrates a n-type element with 

metal interconnects and interface resistances.  For simplicity, the metal contact and contact resistances were given a 

1K budget (each) for the temperature drop.  Such contacts have little effect on the value for u within the 

thermoelectric materials.  The value for u in the metals, however, is temporarily reduced due to the Peltier effect at 

the interfaces ( u u2T ). 
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Table I. Spreadsheet calculation of p-type element performance.  ,  ,  are the measured material properties.  zT, the 

maximum reduced efficiency , and s are calculated from equations (16), (20), (18).  The calculation uses uh = 3.6179 V
-1

 

as a starting value for u.  The subsequent values of u use 

1

un
=
1

un 1

1 2un 1
2 n n + n 1 n 1

2

 

 
 

 

 
 Tn Tn 1( )

Tn + Tn 1

2

 

 
 

 

 
 n n 1( ) following equation (55).  The reduced 

efficiency is given by equation (15), the maximum reduced efficiency (u = s, infinitely staged), by equation (20).  The 

column “uk dT” is used to find the physical length of each interval.  Specifically, 

u dT( )n =
un n + un 1 n 1

2
Tn 1 Tn( )  following equation (40).  Jl is the running sum of u dT( )n  and is proportional 

to the distance to the hot end.  The thermoelectric potential (voltage),   is given by equation (21).  ‘efficiency’ is the 

single element efficiency, including Carnot, (equation (35)) from the hot end (700 C) to the point in question.     

T Material T zT max Red eff s u Red eff u  dT Jl (x ) efficiency

(C) (K) (µV/K) (10-3  cm) (mW/cm K) (1/V) (1/V) (A/cm) (A/cm) (V)

700 CeFe4Sb12 973 156 0.849 26.89 1.04 17.62% 2.82 3.6179 16.70% 0.00 0.42833

675 CeFe4Sb12 948 160 0.842 26.98 1.07 18.04% 2.89 3.6457 17.26% 2.4457 2.45 0.42643 0.44%

650 CeFe4Sb12 923 164 0.834 27.06 1.09 18.27% 2.96 3.6573 17.62% 2.4668 4.91 0.42443 0.91%

625 CeFe4Sb12 898 166 0.826 27.12 1.10 18.34% 3.02 3.6551 17.81% 2.4763 7.39 0.42237 1.39%

600 CeFe4Sb12 873 167 0.818 27.17 1.09 18.26% 3.07 3.6413 17.84% 2.4757 9.86 0.42024 1.89%

575 CeFe4Sb12 848 167 0.809 27.20 1.08 18.06% 3.11 3.6184 17.74% 2.4668 12.33 0.41807 2.39%

550 CeFe4Sb12 823 167 0.800 27.22 1.05 17.75% 3.15 3.5884 17.52% 2.4512 14.78 0.41588 2.91%

525 CeFe4Sb12 798 166 0.791 27.23 1.02 17.36% 3.18 3.5533 17.19% 2.4303 17.21 0.41366 3.43%

500 CeFe4Sb12 773 164 0.782 27.23 0.98 16.89% 3.20 3.5146 16.78% 2.4056 19.62 0.41143 3.95%

475 CeFe4Sb12 748 162 0.772 27.22 0.94 16.37% 3.23 3.4737 16.30% 2.3781 22.00 0.40921 4.46%

450 CeFe4Sb12 723 160 0.762 27.21 0.89 15.79% 3.25 3.4317 15.76% 2.3490 24.35 0.40699 4.98%

425 CeFe4Sb12 698 157 0.752 27.19 0.84 15.18% 3.26 3.3893 15.16% 2.3189 26.66 0.40479 5.50%

400 CeFe4Sb12 673 154 0.741 27.16 0.80 14.54% 3.28 3.3474 14.53% 2.2885 28.95 0.40261 6.01%

400 Zn4Sb3 673 200 3.118 6.37 1.35 21.04% 3.97 3.7279 20.99% 0 28.95 0.40261 6.01%

375 Zn4Sb3 648 195 3.064 6.37 1.27 20.18% 3.99 3.6651 20.09% 0.5889 29.54 0.39950 6.73%

350 Zn4Sb3 623 191 3.008 6.32 1.20 19.45% 4.05 3.6063 19.28% 0.5768 30.12 0.39643 7.45%

325 Zn4Sb3 598 187 2.949 6.22 1.14 18.78% 4.14 3.5512 18.51% 0.5607 30.68 0.39338 8.16%

300 Zn4Sb3 573 182 2.889 6.10 1.08 18.13% 4.24 3.4991 17.73% 0.5430 31.22 0.39035 8.87%

275 Zn4Sb3 548 178 2.825 6.00 1.02 17.43% 4.33 3.4498 16.89% 0.5257 31.75 0.38736 9.57%

250 Zn4Sb3 523 173 2.760 5.93 0.96 16.64% 4.41 3.4028 15.98% 0.5107 32.26 0.38441 10.25%

225 Zn4Sb3 498 168 2.691 5.91 0.88 15.71% 4.45 3.3576 14.96% 0.4999 32.76 0.38151 10.93%

209 Zn4Sb3 482 165 2.645 5.93 0.83 15.02% 4.45 3.3295 14.26% 0.3167 33.08 0.37970 11.35%

209 p-Bi2Te3 482 196 2.225 10.71 0.78 14.31% 3.53 3.5079 14.31% 0 33.08 0.37970 11.35%

200 p-Bi2Te3 473 198 2.174 10.43 0.82 14.86% 3.72 3.5107 14.83% 0.3339 33.41 0.37866 11.60%

175 p-Bi2Te3 448 202 2.016 9.92 0.92 16.14% 4.24 3.5109 15.77% 0.8932 34.30 0.37551 12.33%

150 p-Bi2Te3 423 204 1.834 9.71 0.99 17.03% 4.75 3.4999 16.12% 0.8603 35.16 0.37209 13.13%

125 p-Bi2Te3 398 203 1.632 9.70 1.04 17.64% 5.29 3.4783 16.02% 0.8466 36.01 0.36846 13.98%

100 p-Bi2Te3 373 200 1.415 9.79 1.08 18.08% 5.92 3.4474 15.58% 0.8435 36.85 0.36471 14.85%

75 p-Bi2Te3 348 194 1.198 9.87 1.11 18.41% 6.69 3.4085 14.81% 0.8424 37.70 0.36089 15.75%

50 p-Bi2Te3 323 185 1.015 9.85 1.11 18.40% 7.55 3.3633 13.69% 0.8350 38.53 0.35708 16.63%

25 p-Bi2Te3 298 173 0.927 9.63 1.00 17.14% 8.02 3.3128 12.09% 0.8132 39.34 0.35341 17.49%  
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Table II. Spreadsheet calculation of n-type element performance including contacts and contact resistances.  The 

procedure is the same as for Table I. 

Material T zT max Red eff s u Red eff u  dT Jl (x ) efficiency

(K) (µV/K) (10-3  cm) (mW/cm K) (1/V) (1/V) (A/cm) (A/cm) (V)

metal 975 0 0.0200 1190 0.00 0.00% 0.00 -1.8558 -7.99% 0.00 -0.53886

metal 974 0 0.0200 1188 0.00 0.00% 0.00 -1.8556 -7.97% -2.2062 -2.21 -0.53891 -0.01%

contact 974 0 10000 0.00238 0.00 0.00% 0.00 -1.8556 -7.97% 0 -2.21 -0.53891 -0.01%

contact 973 0 10000 0.00237 0.00 0.00% 0.00 -1.8555 -7.95% -4.41E-06 -2.21 -0.53895 -0.02%

n-CoSb3 973 -186 0.981 42.74 0.80 14.62% -1.89 -2.7929 12.43% 0 -2.21 -0.53895 -0.02%

n-CoSb3 948 -188 0.985 41.86 0.82 14.80% -1.95 -2.7886 12.95% -2.9512 -5.16 -0.53716 0.32%

n-CoSb3 923 -191 0.988 41.02 0.83 14.95% -2.00 -2.7828 13.41% -2.8861 -8.04 -0.53526 0.67%

n-CoSb3 898 -193 0.991 40.24 0.84 15.07% -2.05 -2.7754 13.80% -2.8229 -10.87 -0.53326 1.04%

n-CoSb3 873 -194 0.992 39.50 0.84 15.14% -2.10 -2.7666 14.12% -2.7621 -13.63 -0.53116 1.43%

n-CoSb3 848 -196 0.993 38.83 0.84 15.17% -2.15 -2.7560 14.36% -2.7040 -16.33 -0.52896 1.84%

n-CoSb3 823 -197 0.993 38.23 0.84 15.15% -2.20 -2.7437 14.52% -2.6491 -18.98 -0.52667 2.26%

n-CoSb3 798 -198 0.992 37.71 0.84 15.08% -2.25 -2.7296 14.59% -2.5979 -21.58 -0.52431 2.70%

n-CoSb3 773 -198 0.989 37.27 0.83 14.94% -2.29 -2.7137 14.57% -2.5509 -24.13 -0.52188 3.15%

n-CoSb3 748 -198 0.985 36.93 0.81 14.73% -2.33 -2.6959 14.46% -2.5086 -26.64 -0.51940 3.61%

n-CoSb3 723 -198 0.979 36.68 0.79 14.45% -2.36 -2.6762 14.26% -2.4715 -29.11 -0.51687 4.08%

n-CoSb3 698 -197 0.972 36.55 0.76 14.09% -2.38 -2.6546 13.95% -2.4401 -31.55 -0.51431 4.56%

n-CoSb3 673 -196 0.963 36.54 0.73 13.65% -2.40 -2.6312 13.56% -2.4147 -33.97 -0.51174 5.03%

n-CoSb3 648 -194 0.952 36.65 0.70 13.13% -2.41 -2.6061 13.07% -2.3956 -36.36 -0.50918 5.51%

n-CoSb3 623 -191 0.939 36.89 0.66 12.54% -2.41 -2.5794 12.49% -2.3832 -38.74 -0.50663 5.98%

n-CoSb3 598 -188 0.924 37.25 0.61 11.87% -2.40 -2.5514 11.83% -2.3774 -41.12 -0.50412 6.45%

n-CoSb3 573 -184 0.907 37.75 0.56 11.13% -2.38 -2.5222 11.10% -2.3783 -43.50 -0.50166 6.90%

n-CoSb3 548 -179 0.888 38.37 0.51 10.34% -2.35 -2.4921 10.31% -2.3855 -45.89 -0.49928 7.34%

n-CoSb3 523 -174 0.867 39.10 0.46 9.51% -2.32 -2.4617 9.48% -2.3984 -48.28 -0.49699 7.77%

n-CoSb3 498 -168 0.845 39.92 0.41 8.65% -2.27 -2.4313 8.62% -2.4164 -50.70 -0.49480 8.18%

n-CoSb3 473 -161 0.822 40.82 0.37 7.80% -2.22 -2.4014 7.75% -2.4387 -53.14 -0.49273 8.56%

n-CoSb3 448 -155 0.799 41.79 0.32 6.95% -2.16 -2.3726 6.89% -2.4649 -55.60 -0.49079 8.92%

n-CoSb3 440 -153 0.791 42.12 0.31 6.69% -2.13 -2.3637 6.62% -0.7948 -56.40 -0.49019 9.03%

metal 440 0 0.0200 537 0.00 0.00% 0.00 -2.0400 -1.97% 0 -56.40 -0.49019 9.03%

metal 439 0 0.0200 536 0.00 0.00% 0.00 -2.0399 -1.96% -1.0938 -57.49 -0.49021 9.03%

contact 439 0 10000 0.00107 0.00 0.00% 0.00 -2.0399 -1.96% 0 -57.49 -0.49021 9.03%

contact 438 0 10000 0.00107 0.00 0.00% 0.00 -2.0398 -1.95% -2.18E-06 -57.49 -0.49024 9.02%

n-Bi2Te3 438 -161 2.88 12.78 0.31 6.68% -2.03 -2.3816 6.51% 0 -57.49 -0.49024 9.02%

n-Bi2Te3 423 -171 2.92 12.07 0.35 7.52% -2.25 -2.3999 7.49% -0.4454 -57.94 -0.48903 9.25%

n-Bi2Te3 398 -187 2.94 10.92 0.44 9.02% -2.66 -2.4272 8.96% -0.6933 -58.63 -0.48657 9.70%

n-Bi2Te3 373 -201 2.90 9.80 0.53 10.59% -3.16 -2.4474 10.13% -0.6312 -59.26 -0.48355 10.27%

n-Bi2Te3 348 -210 2.79 8.72 0.63 12.17% -3.79 -2.4577 10.89% -0.5679 -59.83 -0.48002 10.92%

n-Bi2Te3 323 -213 2.61 8.23 0.68 12.96% -4.32 -2.4556 10.89% -0.5206 -60.35 -0.47614 11.64%

n-Bi2Te3 298 -209 2.38 8.00 0.68 12.91% -4.76 -2.4397 10.24% -0.4966 -60.85 -0.47210 12.39%

contact 298 0 10000 0.00073 0.00 0.00% 0.00 -2.1182 -0.97% 0 -60.85 -0.47210 12.39%

contact 297 0 10000 0.00072 0.00 0.00% 0.00 -2.1181 -0.97% -1.54E-06 -60.85 -0.47212 12.39%

metal 297 0 0.0200 362 0.00 0.00% 0.00 -2.1181 -0.97% 0 -60.85 -0.47212 12.39%

metal 296 0 0.0200 361 0.00 0.00% 0.00 -2.1180 -0.96% -7.66E-01 -61.61 -0.47214 12.38%  
 

In order to calculate l and further operating conditions, the total heat flux Utotal,h /Atotal
 or power/area desired 

W /Atotal
 must be given.   

 

The current density Jp is calculated from (46), (44) and (49), giving 

(56) Jp =
Utotal,h

Atotal

1+
An

Ap

p,h n,h

  

The n-element current density, Jn, and l can then be calculated from equations (45) and (37). 

 

For example, assume we desire to make a thermoelectric couple out of the p-type element of Table I with the  

n-element of Table II.  The area ratio which ensures that the desired u current flows in each element using the same 

electric current I, is from equation (45): 
Ap

An

=
61.63

39.34
=1.57.  If the desired total heat flux into the hot side is 20 

W/cm
2
, then from equation (56), Jp = 20 

W

cm2

1+
1

1.57
0.4283+ 0.5388

= 34 
A

cm2
.  Similarly, Jn = 53 

A

cm2 .  The 
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desired length (from equation (37)) is l =
u dT

Tc

Th

J
=

39.34 
A

cm

34 
A

cm2

=1.16 cm.  For a total thermoelectric couple 

area of 1 cm
2
, Ap + An =1.0 cm2

, the individual areas are An = 0.39 cm2
, Ap = 0.61 cm2

 and finally the current 

in the couple is I = 20 A (from I = JA). The output voltage for each couple is 0.142 V using equation (43). 

 

 

5. Thermoelectric Compatibility 
If the compatibility factor s (most efficient u current, equation (18)) of one part of the thermoelectric is 

significantly different from the s of another part, there will be no suitable current where both parts are operating 

close to maximum efficiency. This is the physical basis for thermoelectric compatibility, and is most apparent for 

segmented generators.  

To achieve high efficiency, segmented generators use large temperature differences to increase the Carnot 

efficiency C =
T

Th
.  Since the material thermoelectric properties ( , , ) vary with temperature it is not desirable 

or even possible (most have maximum operating temperature where they may melt or otherwise decompose) to use 

the same material throughout an entire, large temperature drop. Ideally, different materials can be combined such 

that a material with high efficiency at high temperature is segmented (Figure 6) with a different material with high 

efficiency at low temperature [21].  In this way both materials are operating only in their most efficient temperature 

range. 

  

Figure 6. Schematic diagram comparing segmented and cascaded thermoelectric generators.  The cascaded generator 

has a cascading ratio of 3.  

If u could be constrained to be always equal to s, then the most efficient material to choose for a segment 

would be that with the highest thermoelectric figure of merit z.  In this case known as infinite staging [2]  (or upper 

limit of efficiency [3]) the interface temperature between segments would ideally be the temperature where the z of 

both materials cross.  For example, according to Figure 8, the best infinitely staged p-leg (0 °C to 1000 °C) would 

contain (Bi,Sb)2Te3, Zn4Sb3, TAGS, CeFe4Sb12, and SiGe with interfaces of about 200 °C, 400°C, 550°C and 

700°C. 

Unfortunately, in a real generator, u = s is not possible, so a compromise value for u must be selected.  If the 

compatibility factors s of the segmented materials differ substantially, all segments can not be simultaneously 

operating efficiently, and the overall efficiency may actually decrease as compared to a single segment alone.  

Figure 7 shows graphically that a suitable average value for u can be found for the three materials (Bi,Sb)2Te3, 

Zn4Sb3, and CeFe4Sb12, which have compatibility factors within about a factor of two.  The reduced efficiency at 

this average u is not far from the maximum reduced efficiency.  SiGe on the other hand, has a much lower value for 

s, such that if the u shown in Figure 7 is used, a large negative efficiency will result for the SiGe segment and the 

overall efficiency will decrease.  If a smaller u is used, so that positive efficiency will result from the SiGe segment, 
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the efficiency of the other segments will have deteriorated more than the efficiency increase from the SiGe 

segment.  Thus, despite having a reasonably high value of z for good efficiency, SiGe can not be segmented with 

the other materials in Figure 7 because of different compatibility factors.   

As a rule of thumb, the compatibility factors of segmented materials should be within about a factor of two.  

Within this range, a suitable average u can be used which will allow an efficiency close to that determined by z.  

Outside this range of s, are materials that are incompatible where the efficiency will be substantially less than that 

expected from z.  The compatibility factor is therefore, like z, a thermoelectric property essential for designing an 

efficient segmented thermoelectric device.  
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Figure 7. Comparison of reduced efficiency as relative current density, u, varies for different p-type thermoelectric 

materials.  An average value for u can be found for (Bi,Sb)2Te3 (125° C), Zn4Sb3 (300° C), and CeFe4Sb12 (550° C), that 

gives a reduced efficiency (indicated with a “•”) near the maximum efficiency.  SiGe (800° C), on the other hand, has 

such a low compatibility factor s, that using a u appropriate for the other materials would result in a negative reduced 

efficiency for SiGe.  This makes SiGe incompatible for segmentation with the other thermoelectric materials.     

5.1. Materials selection  
For segmented generators high z materials need to be selected that have similar compatibility factors, s.  Other 

factors (not considered here) may also affect the selection such as: thermal and chemical stability, heat losses, 

coefficient of thermal expansion, processing requirements, availability and cost [22].   

The compatibility factor (Figure 8) can be used to explain why segmentation of (AgSbTe2)0.15(GeTe)0.85 

(TAGS) with SnTe or PbTe has produced little extra power [23], but using filled skutterudite would increase the 

efficiency from 10.5% to 13.6% [24].   

Very high efficiency segmented generators to 1000° C could be designed with skutterudites or PbTe/TAGS as 

long as compatible, high temperature materials are used [24].  The compatible, high zT n-type material La2Te3 [25] 

would be ideal as long as a compatible p-type material is found.   

For the high temperature p-type element, a high zT material that is also compatible with PbTe, TAGS or 

Skutterudite has not been identified.  Even if the material has low zT, e.g. zT  0.5, it will produce some power, as 

long as it is compatible.  For a material with a low zT to be compatible with PbTe, TAGS or Skutterudite it must 

have s > 1.5 V
-1

, ideally s  3 V
-1

.  Since s   z/2 , the zT  0.5 material can not be a high Seebeck coefficient band 

or polaron semiconductor.  Materials with high z and s have thermoelectric properties typical of high  metals.  In a 

metal, the thermal conductivity is dominated by the electronic contribution given by the Wiedemann-Franz law  = 

LT/  where L  2.4  10
-8

 V
2
/K

2
.  The compatibility factor s  /(2 )  /(2LT) would then be appropriate if  is 

greater than 100 V/K at 1000 K [24].  For example, a candidate for such a refractory p-type metal is Cu4Mo6Se8 

[26].   
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Figure 8. Figure of merit (zT) and compatibility factor (s) for p-type materials.   
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Figure 9. Figure of merit (zT) and compatibility factor (s) for n-type materials.  

 

5.2. Cascaded Generators 
Cascaded generators (Figure 6) can avoid the compatibility problem between segments [5].  In a segmented 

element all segments are thermally and electrically in series so that a single uh defines u(T) throughout the element.  

However a cascaded device contains an independent electric circuit for each stage, allowing an independent J and 

therefore u in each stage.  In this way, different, optimal values of u can be used for each stage.  It is because of the 

compatibility difference between materials that makes cascading always more efficient than segmenting [2, 3].  

However, cascading is much more difficult to implement than segmentation. 

Truly independent circuits will require an electric connector between a stage at high temperature and the load 

at ambient temperature.  In practice, it is best not to connect the high temperature stages directly to the load.  Such 

connectors must have some loss because they can neither have very low electric resistance (or they will conduct 

heat away from the hot side - due to Wiedemann Franz law), nor have high electric resistance (large Joule losses).  

It can be shown that the loss from such connectors is proportional to 1/N where N is the number of couples for each 

connector.  Thus to minimize these losses, the ratio of the number of thermoelectric couples to the number of 

connectors should be large. 

To avoid such losses entirely the electric current should pass from the high temperature stage to the load by 

going through the thermoelectric elements of the low temperature stage (Figure 6).  The differing values of u is 

provided by having a different number of couples in each stage.  The ratio of the number of couples (N2/N1) in the 

cooler stage (Stage 2, N2 couples) to that of the hotter stage (Stage 1, N1 couples), called the cascading ratio [27], is 

derived by equating the heat flux out of the hot stage to the heat input to the cold stage (thus T in the following 

formulas is the interface temperature between the two stages).  This can be expressed succinctly (including both the 

Peltier and conduction terms) using the thermoelectric potential [24] (equation (49)).   

Equating the heat from N1 stage 1 couples with N2 stage 2 couples operating with the same electric current I, 

gives:  
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(57) N2

N1
=

p,1 n,1

p,2 n,2

1,pT +
1

s1,p
1,nT

1

s1,n

2,pT +
1
s2,p

2,nT
1
s2,n

  

where, for maximum efficiency, u is approximately equal to an averaged s.   

The simplification where the thermoelectric properties ( , , ) are constant with respect to temperature is 

given by Harman [27].  For SiGe cascaded with TAGS/PbTe the optimum cascading ratio is 2.21, so that there 

should be about twice as many TAGS/PbTe couples as SiGe couples.  With this cascading ratio the efficiency of 

the generator can achieve the sum of the two stages, 10.39% + 4.39% = 14.78% [24]. 

5.3. Functionally graded 
The importance of compatibility has been made apparent for a segmented thermoelectric generator, but 

compatibility is also a consideration for all thermoelectric devices whether the materials are homogeneous or 

inhomogeneous from segmentation or being functionally graded.  Since the compatibility factor of even a 

homogeneous material is temperature dependent, the change in s from one end of the leg to the other will, in 

general, adversely effect device performance.  The consideration of compatibility within the same material has been 

called self-compatibility [11].  Due to the explicit temperature dependence of s (equation (18)) in conjunction with 

the typical temperature dependence of z and , the problems with self-compatibility are generally more apparent at 

low temperatures [11].   

For inhomogeneous materials, the compatibility factor must be considered when optimizing the compositional 

variation.  The thermoelectric properties of most materials can be altered with small changes in doping, that allows 

a tuning of both z and s [Ref Gascoin?].  The most efficient material will not only have high zT, but will also be 

compatible with the other materials.  For example, (Bi,Sb)2Te3 with the highest zT also has a large compatibility 

factor compared to TAGS.  By lowering the carrier concentration from the highest zT composition, a more 

compatible material can be used that is more efficient when segmented with TAGS despite having a slightly lower 

zT. 

True functionally graded materials can have a continuum of different compositions along the length of the 

material, which can  enhance efficiency [28, 29].  Ideally, it would be best to have a local criterion for maximizing 

efficiency [8].  By examining the reduced efficiency (equation (15)) at every location, it can be rationally 

determined if alterations in materials properties that change z and s will further increase efficiency. This also avoids 

the complex numerical methods used to predict the performance gains of functionally graded designs.     

  

6. Design Optimization 
The performance of a thermoelectric generator is dependent on many variables which could be optimized 

globally to find the optimum design.  However, by using a reduced variable approach to the design problem, many 

interdependencies of the design variables are eliminated which allows a better understanding of the effect of each 

variable. 

The following discussion is intended primarily for ideal thermoelectric generators.  In “ideal” systems [30] 

there are no thermal losses, no contact (thermal or electric) resistances and only 1-dimentional heat flow.  Many 

non-idealities can be considered part of the system design, allowing the thermoelectric portion of the generator to 

be considered ideal.  In addition, the effect of some non-idealities scale with length the same way as the 

thermoelectric material (such as interconnect metals with a fixed T budget), which allows them to be incorporated 

without significant modification of the design algorithm.  Finally, non-idealities which scale with length differently, 

(such as contact resistances) should lead only to small corrections that will give a quick convergence if calculated 

iteratively.  

6.1. Efficiency Matrix 
The first goal of the design process is to evaluate the highest possible thermoelectric efficiency for all hot and 

cold side temperatures (of the thermoelectric generator, not the heat sinks) that may be viable.  This will produce an 

optimized efficiency that is only a function of the thermoelectric hot and cold side temperatures. 
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(58) = max(Th ,Tc )   

The presumption is that any other variables (such as materials chosen, interface temperatures, geometry, 

current, etc.) that may be required for the calculation of efficiency can be optimized given a Th and Tc.  This is true 

for the thermoelectric material interface temperatures, but less true for size of metal interconnect and contact 

resistance.    

6.1.1. Interface Temperatures 
Once the materials are selected based on z and s, the interface temperature between thermoelectric segments 

must be optimized.  The interface temperature can be estimated by where the value of z crosses or by using the 

approximation that u remains constant within a thermoelectric leg [11].  Calculating the efficiency (as described 

above section number?) for different initial conditions uh for both the n- and p- element, will allow a quick 

convergence to the most efficient (equation (42)) up,h. and un,h .   

The ideal optimum interface temperature is the one which has equal reduced efficiency for either material at 

that temperature (see 209° C rows in Table I).  By estimating the change in reduced efficiency with temperature 

(using an optimized u), the optimum interface temperature can be found with an iterative process.  Often the 

interface temperature is simply the maximum operating temperature of a material (see 400° C rows in Table I).   

6.2. Thermoelectric Element Length 
Once the optimized efficiency (equation (58)) is found given a Th and Tc, the values of u(T) and (T) for both 

the n- and p- element are defined.  Most of the remaining performance parameters also require the thermoelectric 

element length.  This is usually determined by the desired total heat flux Utotal,h /Atotal
 (or power/area W /Atotal

).  As 

shown in the discussion of equation (56), l can be calculated from Utotal,h /Atotal
 with u(T) defined by optimizing the 

efficiency between Th and Tc.  Thus l is a function only of Th, Tc. and Utotal,h /Atotal
. 

(59) l = l(Th,Tc,Utotal Atotal )   

Once functions (58) and (59) are evaluated for a variety of Th, Tc. and Utotal,h /Atotal
, they can be incorporated into the 

system model to find the optimal system operation condition.  

For example, often in a thermoelectric generator the power/mass is the primary concern.  In this case, the 

power/mass can be increased by reducing the mass of the heat exchangers at the cost of reducing the temperature 

difference which lowers the efficiency.  By knowing how the optimum efficiency and length vary with input 

temperature and heat flux, the exact system solution is found without requiring the systems analysis to be capable 

of thermoelectric calculations. The system power and voltage are directly proportional to the size of the generator 

(through Atotal) and number of couples.  Once the system trades are complete, the final configuration of the 

thermoelectric generator can be established.     

6.3. Voltage 
The voltage produced  Vsystem is the number of couples connected in series Nseries times the couple voltage Vcouple 

(equation (43)).   

(60) Vsystem = VcoupleNseries   

Thus the number of couples in series is determined by the voltage requirement.  Often redundancy is desired by 

including additional parallel circuits Nparallel.   

(61) Nsystem = NseriesNparallel  

Once the thermoelectric length is fixed, the total power desired W will define the total cross sectional area Atotal.  

The relationship between the area of a couple and the number of couples Nsystem, is given by. 
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(62) Acouple =
W

Utotal

Atotal

Nsystem

  

6.4. Maximum power density/matched load 
For many power generation applications, the power output is of greater concern than efficiency.  In solid state 

thermal to electric conversion, an important characteristic of the system is the aerial power density (power provided 

per cross sectional area W /Atotal
).  Equations (47), (50), show that the aerial power density is inversely proportional 

to the thermo-element length l.  At a local level, this can be seen using the approximations T
T

l
 and 

W

A
Pl .    

Equation (10) then becomes 

(63) 
W

A

T 2

l
u u( )   

Thus any aerial power density can be achieved by adjusting l, allowing the reduced current u which provides the 

maximum efficiency to always be used.   

In real generation systems it is the characteristics of the heat source and sink, heat exchangers and heat 

concentrators that are needed to find the conditions for maximum aerial power density.  Such passive heat transport 

systems require significant temperature drops to achieve high heat fluxes needed for high aerial power densities.  

The temperature drop used in the thermal transport system reduces the temperature drop in the thermoelectric 

generator, and therefore the Carnot efficiency.  Thus aerial power density of the system can be increased at the cost 

of reduced system efficiency. As a rule of thumb, the maximum power is generally found when only 1/2 of the heat 

source – heat sink temperature difference is used across the thermoelectric (by thermal resistance load matching 

[31]) with the other half used in the heat transport system.  Nevertheless, the thermoelectric generator itself should 

be designed to operate as efficiently as possible with the  heat flux and temperature difference it is allotted.  In the 

discussions of this article,  ( T) refers to the temperature difference across the thermoelectric only, not the entire 

system [ref Gao Min next chapter?]. 

 Maximum power density in thermoelectric generators has been frequently analyzed [2, 32, 33] by 

distinguishing the different operation condition which in a given thermoelectric generator provides more power (at 

lower efficiency) than the maximum efficiency condition (u = s).  For a given generator (l is fixed) and constant 

temperature difference ( T), (equation (63)) the maximum aerial power density is found when u =
z

2
 which is 

slightly larger than u = s (Figure 2).  However, the larger u will require additional heat (from Peltier effect) to be 

supplied and the overall process is at a lower efficiency (because of Joule losses).   

This analysis is traditionally performed using load resistance RLoad as the current adjusting variable as opposed 

to u or even electric current I.  In addition, the approximation , , , and therefore z are constant is also commonly 

made.  By approximating T
T

l
, and combining with I(RLoad + R) = T  and equation (9) gives 

(64) u
z R

RLoad + R
 

Thus the u =
z

2
 condition is given by RLoad = R  (matched load) while the u = s condition corresponds to 

RLoad = R 1+ ZT  (with Z = z), the load resistance for maximum efficiency [2].  
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However, when designing a system (with length, l, is a design parameter), the matched load condition 

(RLoad = R , u =
z

2
) is a poor choice not only when considering efficiency, but also when optimizing aerial power 

density, size, weight or even voltage.  For example, consider a design where the matched load condition was 

selected for the thermoelectric generator.  This generator has Q heat flux supplied to it, at some Th and Tc, and 

generates 
W

A
= z

2

Q  aerial power density ( z

2

 is the efficiency when u =
z

2
), with a length l z

2

.  Now, replace 

this u =
z

2
 generator with a u = s (RLoad = R 1+ ZT ) generator having the same Th and Tc, and heat flux Q.  For 

a small T generator equation (38) can be approximated 

(65) Q
T

l
Tu +1( )  

 

To utilize the same heat flux Q, the u = s generator will need to have a smaller length ls , than a u =
z

2
 generator 

because s <
z

2
.  From equation (65) the ratio of the two lengths is approximately given by   

(66) 
ls
l z
2

zT +1
zT
2 +1

  

Operating at the same temperatures but different currents, the longer, matched load generator will always have 

lower efficiency than that of the shorter u = s generator, because z

2

< s.  For comparison, a generator operating 

with u =
z

2
 will have a reduced efficiency of r =

zT

2zT + 4
, which is always less than that of the u = s generator 

given by equation (20).  Since the heat entering both generators is the same, the u = s generator will provide more 

power (
W

A
= Q, Q is the same) as well as greater efficiency (and higher voltage).  Also because  ls < l z

2

the u = s 

generator will be smaller and therefore lighter.   

It is worth emphasizing again that for a system which includes heat exchangers, the temperatures chosen for 

the thermoelectric will be different for the maximum power density, and the maximum efficiency problem.  But in 

both cases, the generator should be designed such that the current used corresponds to the maximum efficiency and 

not the matched load condition.   

When losses are introduced in the thermoelectric portion of the generator which do not scale with length in the 

same way as the thermoelectric materials, the optimal current may deviate toward the matched load condition.  An 

example is electric contact resistance which is independent of length.  For systems with small l, the contact 

resistance becomes more important and so designing a longer generator by increasing the current toward the 

matched load condition increases both thermoelectric generator efficiency as well as power density.  Such losses 

also lower the effective Z for the generator (an average of the z(T) of each material [10]) including contact 

resistances, which also brings the load for maximum efficiency closer to the matched load condition. 

 

6.5. Non Optimal Operating conditions 
Once the optimal configuration is established, the performance at non-optimal conditions, such as the full I-V 

curve can be calculated.  In general, the heat flow, the temperatures, and the current can all vary from the optimal 

but the geometry remains fixed.  The heat flow and temperatures will change in a correlated way determined by the 

thermal impedance of the components external to the thermoelectric converter, just as the electric current will 

change due to a change in the external electric impedance.  Given the electric current in the generator and two out 
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of three of the heat flux, hot and cold side temperatures (or equivalent relationships), the relative current density u, 

and therefore the generator characteristics can be determined.   

For example, if the hot and cold side temperatures are known (e.g. remain constant for low external thermal 

impedance) the relative current density u(T) of each element can be calculated (and estimated with ) from 

(67) I
l

A
= u dT

Tc

Th
u  T   

The approximation in equation (67) is good when u(T) remains approximately constant.  This is typically true 

for electric currents up to those required for maximum efficiency.  For very large currents, u no longer remains 

constant and diverges at the hot side.  A 
uh = ±

 is the current for a thermoelectric cooler operating at maximum T 

( T = 0  at Th).  The corresponding uc does not diverge, so it is more stable to compute using uh rather than uc as 

initial conditions. 

If the effective external thermal impedance is high, an I-V curve can be calculated assuming the heat supplied 

remains constant (and the hot or cold side temperature or a relationship is given).  In this case, the three unknowns 

(the unknown temperature, and an initial value for un and up) are solved from three equations: two of the form (67), 

for n-type and p-type, and the heat flow (49) for the couple. 

For low current operation, the Peltier cooling at the hot end of the thermoelectric will decrease, requiring an 

increase in the hot side temperature and the interface temperatures.  Such high temperature operation may advance 

the degradation of the thermoelectric materials.  If such degradation is detrimental to system performance, lower 

optimal operation temperatures should be selected.   

Because the geometry of the elements (in particular the length and area of each segment) remains the same 

when changing the current, the interface temperatures between the segments will drift from their optimal values.  

The interface temperatures can be found by finding the interface temperatures that keep the lengths of each segment 

constant, using equation (67) as a guide.  Even for low external thermal impedance, where the hot and cold side 

temperatures remain constant, the interface temperatures between the segments will change somewhat with varying 

electric current. 

7. Acknowledgements 
 

I would like to thank Jean-Pierre Fleurial and Thierry Caillat for the SiGe, Zn4Sb3, (Bi,Sb)2Te3, and 

Skutterudite data,   Peter Mayer for discussion on the matched load operation, Tristan Ursell for assistance with 

figures and proofreading some derivations, and  Daniel Stolarsky for computation of functionally graded 

(Bi,Sb)2Te3.  The SnTe and PbTe data (2N and 3P) is from the Teledyne Thermoelectric Design Manual (1970).  

The research described in this chapter was carried out at the Jet Propulsion Laboratory, California Institute of 

Technology, under a contract with the National Aeronautics and Space Administration. 

8. References 
 

 

[1] D. M. Rowe, (CRC, Boca Raton, 1995), p. 701. 

[2] R. R. Heikes and R. W. Ure, Thermoelectricity: Science and Engineering (Interscience, New York, 1961). 

[3] T. C. Harman and J. M. Honig, Thermoelectric and Thermomagnetic Effects and Applications (McGraw-Hill, New 

York, 1967). 

[4] B. Sherman, R. R. Heikes, and R. W. Ure, J. Appl. Phys. 31, 1 (1960). 

[5] G. J. Snyder and T. Ursell, Phys. Rev. Lett. 91, 148301 (2003). 

[6] B. Y. Moizhes, Y. P. Shishkin, A. V. Petrov, and L. A. Kolomoets, Soviet Physics-Technical Physics 7, 336 (1962). 

[7] O. S. Gryaznov, B. Y. Moizhes, and V. A. Nemchinskii, Soviet Phys. Tech. Phys. 23, 975 (1978). 

[8] J. Schilz, L. Helmers, W. E. Muller, and M. Niino, J. Appl. Phys. 83, 1150 (1998). 

[9] L. I. Anatychuk, Thermoelectricity, Volume I. Physics of Thermoelectricity (Institute of Thermoelectricity, Chernivtsi, 

Ukraine, 1998). 

[10] H. J. Goldsmid, in Thermoelectric Handbook, edited by D. M. Rowe (CRC, Boca Raton, 1995). 

[11] T. S. Ursell and G. J. Snyder, in Twenty-first International Conference on Thermoelectrics. Proceedings, ICT'02 

(IEEE, Long Beach, California, USA, 2002), p. 412. 

[12] C. Zener, in Thermoelectricity, edited by P. H. Egli (John Wiley & Sons, New York, 1960). 



24 

[13] L. J. Ybarrondo, Solid-State Electronics 10, 620 (1967). 

[14] H. G. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964). 

[15] B. W. Swanson, E. V. Somers, and R. R. Heikes, J. Heat Transfer 83, 77 (1961). 

[16] L. Helmers, E. Muller, J. Schilz, and W. A. Kaysser, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 56, 60 

(1998). 

[17] M. S. El-Genk and H. H. Saber, Energy Conv. Manag. 44, 1069 (2003). 

[18] A. E. Kaliazin, V. L. Kuznetsov, and D. M. Rowe, in Proceedings ICT2001. 20 International Conference on 

Thermoelectrics, 2001), p. 286. 

[19] R. W. Cohen and B. Abeles, J. Appl. Phys. 34, 1687 (1963). 

[20] G. J. Snyder, in Twenty-second International Conference on Thermoelectrics. Proceedings, ICT'03 (IEEE, La Grande 

Motte, France, 2003), p. 443. 

[21] T. Caillat, J.-P. Fleurial, G. J. Snyder, and A. Borshchevsky, in Proceedings ICT2001. 20 International Conference on 

Thermoelectrics, 2001), p. 282. 

[22] C. M. Kelley and G. C. Szego, in Colloq. on Energy Sources and Energy Conversion, Cannes, 1964), p. 651. 

[23] E. A. Skrabek and D. S. Trimmer, in Thermoelectric Handbook, edited by D. M. Rowe (CRC, Boca Raton, 1995), p. 

267. 

[24] G. J. Snyder, Appl. Phys. Lett. 84, 2436 (2004). 

[25] L. R. Danielson, V. Raag, and C. Wood, in Proceedings of the 20th Intersociety Energy Conversion Engineering 

Conference. Energy for the Twenty-First Century (SAE, 1985), Vol. 3, p. 531. 

[26] G. J. Snyder and T. Caillat, (Materials Research Society, Warrendale, PA, Boston MA, 2003), Vol. 793, p. 37. 

[27] T. C. Harman, J. Appl. Phys. 29, 1471 (1958). 

[28] E. Muller, C. Drasar, J. Schilz, and W. A. Kaysser, Materials Science and Engineering A 362, 17 (2003). 

[29] G. D. Mahan, J. Appl. Phys. 70, 4551 (1991). 

[30] G. Min and D. M. Rowe, in Thermoelectric Handbook, edited by D. M. Rowe (CRC, Boca Raton, 1995), p. 479. 

[31] J. Stevens, in 34th Intersociety Energy Conversion Engineering Conference (Society of Automotive Engineers, 

Vancouver, 1999). 

[32] M. H. Cobble, in Thermoelectric Handbook, edited by D. M. Rowe (CRC, Boca Raton, 1995), p. 489. 

[33] D. L. Kerr, in Thermoelectric Materials and Devices, edited by I. B. Cadoff and E. Miller (Reinhold, New York, 

1960), p. 227. 

 


