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1 FGM TE generator and cooler

1.1 Introduction

Since the discovery of semiconductor thermoelements, there has been much effort to enhance

the efficiency of thermoelectric (TE) devices. Along with efforts to increase a material’s fig-

ure of merit, the use of Functionally Graded Materials (FGM) offers other ways to further

improve device performance [7,10–12,18,19,38,44,56,57,61,72,82,89–95,107,122–124,126,

127,154–157,159,162,165,166,168,169,173,182,183,185]. Graded thermoelectrics are charac-

terized by a macroscopic gradient in their functional properties, caused by spatial variation

of the composition (including doping) or microstructure. Also non-continuously graded (i.e.

segmented) elements are considered FGM since they lead to the same functional effect.

Although a TE gradient means a related spatial variation of all TE material properties, the

strongest effect is generally linked to the variation of the Seebeck coefficient which is the pri-

mary material parameter of TE coupling between thermal and electrical energy transport.

This is because a gradient in the Seebeck coefficient is linked to an additional, local heat

release or absorption whereas a resistivity gradient will merely gradually shift the location of

Joule heat release along the element. A gradient in the thermal conductivity will just cause

an asymmetry in the outflow of the internally released heat to the hot and cold terminals

and may thus deform the temperature profile along the element. It will tend to concentrate

the temperature gradient at regions with low thermal conductivity.

Essentially, the functional effect of TE FGM is already observed in a homogeneous TE ele-

ment with real, temperature dependent, material properties.

Due to the temperature-bound or explicitly position-dependent Seebeck coefficient, Peltier

heat is absorbed or released inside the material. In a homogeneous but temperature-dependent

material this is known as Thomson effect. In case of an explicit Seebeck gradient, it is also

referred to as distributed Peltier effect or extrinsic Thomson effect (ETE) [13,14,28,82,93].

Simulations and modeling of TE devices and materials is an important part to get guidelines

how to improve them for real life usage, see e.g. [34,48,53,55,78,79,105,121,129,135,146,152].

The central target of theoretical TE FGM studies is to elaborate recipes for optimal gradients

in the TE material properties which ensure optimum operation of a TE device [18,19,107].

Ideally, it would be best to have a local criterion for optimizing global performance; currently

local criteria are known for the efficiency of a thermogenerator (TEG) and the coefficient

of performance of a Peltier cooler (TEC) [159, 168]. However, global optimization requires

constraints for the allowed range of temperature dependent materials properties in the con-
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1.1 Introduction

sidered materials. In order to prevent that global performance diverges in the optimization

process, limits of the material properties have to be fed into the process, be these upper

limits for the Seebeck coefficient and the electrical conductivity and a lower limit for the

thermal conductivity, or averages of the TE properties (resp. the figure of merit), of the

power factor, or of the efficiency. The optimization strategy we are speaking about here

is an optimization strategy due to the material itself. Of course there is the possibility of

optimizing other design parameters like the length of an element, its cross-sectional area or

the ratio of both [29,84,111,114,163,175,180]. Another aspect would be to include contact

resistances into the considerations [8, 37, 110, 112, 115, 117, 145, 146], but this is beyond the

scope of this work. Clearly distinguishing from design optimization of real TE devices we

will consider here an ”ideal” thermogenerator or Peltier device where no thermal losses due

to radiation or thermal bypasses, no thermal or electric contact resistance, and only one-

dimensional flow is assumed, i.e. electrical current and heat flux are parallel, see also [37].

Every non-parallel arrangement without a magnetic field, where you have an arbitrary an-

gle between the temperature gradient and the electrical current leads to a reduction of the

performance which is deduced from a generalized figure of merit shown by Gryaznov and

co-workers [64]. For the sake of simplification, a single but representative (segmented or

continuously graded) TE generator or cooler element (p-type or n-type, of element length

L and constant cross-sectional area Ac) is often considered as part of a TE device or as a

single-element device.1 Doing this, optimization strategies are based on fixed parameters L

and fixed boundary temperatures Ta and Ts within the framework of a unified 1D model

for both TEG and TEC (see Fig. 1.1 and [156]), where Ta is the temperature at the heat

absorbing side (hot side for TEG, but cold side for TEC), and Ts denotes the heat sink tem-

perature which is in many cases fixed not far from the room temperature. The total heat flux

and its components in Fig. 1.1 are indicated by the symbols q = −κ∇T +αT j =: qκ + qπ

with Fourier and Peltier heat fluxes qκ and qπ, respectively (see also [157]).2 Note that all

flows are counted positive according to right-headed arrows, thus the magnitude of the flow

vectors with left-headed arrows will adopt negative numerical values in the 1D formulae.

1In a 1D approach the segmentation or grading is clearly in the same direction as the electrical current and
the heat flux are. In a quasi-1D or in a multidimensional approach you have to take care of the direction
of the electrical current and the heat flow in comparison to the grading direction, see [89–93].

2One has to take care of the terms and the notation used. Normally, Q denotes the heat in units of 1 J,
whereas with Q̇ = ∂Q

∂t
the heat transfer rate, heat flow or thermal power in units of 1 W is meant.

For the sake of simplicity the dot is sometimes omitted, as we do here, too. The heat flux is often used
which is the heat transfer rate per cross-sectional area q = 1

Ac
Q̇ = 1

Ac

∂Q
∂t

in units of 1 W/m2.
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1 FGM TE generator and cooler

Figure 1.1: Unified 1D model of a thermoelectric element (single p-type pellet of length L,
constant cross-sectional area Ac): lower temperature profile: Cooling operation
(= TEC case with Ta < Ts); upper temperature profile: Thermoelectric generator
(= TEG case with Ta > Ts). Smaller bowing of the temperature profile in TEG
case shall symbolize the relatively lower current in efficient operation, compared
to the TEC. Note that T (x) will peak in the interior of the TE element at current
values only above the optimum current according to maximum efficiency and
maximum coefficient of performance, respectively. This can be shown for the
CPM case analytically, see footnote 7.

The different arrow orientations just shall give an idea on the physical flow directions.

All calculations done here are referring to a planar arrangement of prismatic-shaped ele-

ments. Other shapes of elements need more detailed consideration, like e. g. circular shape

[97–99, 111, 113, 140], where the formulae for the power output may change while the effi-

ciency remains independent of the shape.

On a macroscopic scale, the framework of non-equilibrium thermodynamics with Onsager’s

approach of a linear response theory is used [130–132]. Under isotropic conditions, the con-

stitutive relations are

j = σ E− σ α ∇T , q = α T j− κ ∇T , (1.1)

with the electric field vector E, electrical current density j , temperature T , total heat flux

q, Del operator (or nabla operator) ∇, and the material properties isothermal electrical
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1.1 Introduction

conductivity σ, resistivity ρ = 1/σ, thermal conductivity κ under zero current and Seebeck

coefficient α. Note that in general all the material properties are tensors and need then a

generalized description, especially if an additional magnetic field is present [4–6,9,26,27,64,

70,150].

Assuming steady-state conditions, the governing equations result from the principles of

conservation of charge and energy

∇ · j = 0 , ∇ ·q = j ·E , (1.2)

leading to the thermal energy balance in vector notation

∇ · (−κ ∇T ) =
j2

σ
− T j · ∇α . (1.3)

Thereby, the electrical current density j is a constant due to the 1D approach. It fulfills the

continuity constraint in one dimension and satisfies ∇ · j = ∂
∂xjx = 0⇒ jx =const. Eq. (1.3)

makes clear that Joule’s heat and a gradient in the Seebeck coefficient appear as sources of

the thermal heat flux. Note that the Peltier-Thomson term T j · ∇α contains both the usual

Thomson contribution (temperature gradient effect with a temperature dependent Seebeck

coefficient) and the Peltier contribution (spatial gradient effect, see also [28]): T j · ∇α =

j · (∇Π− α∇T ) with the Peltier coefficient Π = αT and ∇Π = dΠ
dT∇T = (α+ T dα

dT )∇T .

For detailed commentary on Onsager’s approach see the original articles [130–132]. Espe-

cially for application in thermoelectrics Domenicali denoted the approach of the Onsager-de

Groot-Callen theory as a kind of ”field theory” of the thermodynamics of irreversible phe-

nomena in terms of vector functions which are dependent on temperature and position in

general, see [31–33,40–45,52,108,130–132,134,136,142] for details.

In the next Section 1.2 the fundamentals of a thermodynamic optimization are introduced

together with the definition of the entropy production, the thermoelectric potential and local

reduced efficiencies. After that, alternative optimization variants will be discussed in sec-

tion 1.3, especially the differences taking into account local and/or temperature dependence

of the properties. In section 1.4 starting with the Constant Properties Model (CPM) the

known averaging procedures are introduced and valued. Section 1.5 is dedicated to high-

light a ”model-free setup” based on spatial material profiles, where you find a summary

on numerical and analytical solutions of the thermal energy balance equation. The relation
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1 FGM TE generator and cooler

between the compatibility approach and optimum material grading is shown in Section 1.6.

In the final two Sections 1.7 and 1.8 a short summary and an outlook to related problems

are given.

1.2 Thermodynamic optimization and

minimum of entropy production

Thermoelectric effects are caused by coupling between heat and charge transport of the

electronic ”fluid” [32]. For a deeper understanding of TE processes as processes out of

thermodynamic equilibrium we highly recommend the article by C.B. Vining [179]. The de-

scription on a mesoscopic level is based on a stationary picture where all the thermodynamic

potential functions are clearly defined, though the system itself produces dissipation. Since

the inherent relaxation times are much smaller than the time scale of the varying potentials,

this description is also a definition of a quasi-static process. As a consequence, the classical

quasi-static relation dS = δQ/T between the heat and the entropy variation is fully valid

and can be expressed in terms of the entropy and heat current densities through jS = q/T .

In close connection with the general linear response theory this leads to the well-known

coupled set of equations for heat flux and particle flux [31,32]

 jN

q

 =

 L11 L12

L21 L22


 − 1

T∇µ

∇( 1
T )

 , (1.4)

where µ is the Gibbs electrochemical potential (as sum of the chemical potential and the

electrical potential), jN the carriers flux, and q the heat flux. 1
T∇µ and ∇( 1

T ) are the forces

corresponding to the electrochemical and thermal potentials, respectively. As a dissipative

system, the system’s evolution is driven by a minimal production of entropy where each

fluctuation of any thermodynamic potential is subjected to a restoring force to equilibrium

[142]. This concept had already been used by Clingman [35,36] who set out to use minimum

entropy production to derive optimum device performance, for details we also refer to [63].

The symmetry of the off-diagonal terms Lij = Lji, as generally expected from Onsager’s

reciprocal relation, is equivalent to a minimal entropy production of the system under out-

of-equilibrium conditions [142]. The kinetic coefficients Lij can easily be expressed using

material parameters leading to L11 = T
e2
σ, L12 = −T 2

e2
σ SJ , L22 = T 3

e2
σ S2

J + T 2κ, where

6



1.2 Thermodynamics and entropy production

SJ = αe is the so-called entropy per carrier, see e. g. [32, 43–45]. Using the local expansion

∇ 1
T = − 1

T 2∇T and E = −∇µe , Eq. (1.1) is reproduced [179].

For decades, the figure of merit z = α2σ/κ has provided a measure of the quality of a

thermoelectric material, for details see Section 1.4.2 and 1.4.3. A general rule is, that if a

material is good (high z T ) then it is good in both TEG and cooler applications.

1.2.1 Volumic entropy production

Since the entropy flux is jS = q/T , it follows that the volumic entropy production νS is

directly given by ∇ · jS = ∇ · (q/T ) which gives with Eqs. (1.1) and (1.2)

νS = ∇ · jS = q · ∇
(

1

T

)
+

j ·E
T

= −κ∇T · ∇
(

1

T

)
+

1

T

j2

σ
, (1.5)

where we identify the Joule and non-isothermal conduction contributions to the entropy. This

expression can be rewritten with E = −∇µe in the form ∇ · jS = q · ∇
(

1
T

)
+
(
∇µ
eT

)
· (−j).

One can notice that the volumic entropy production is simply obtained from the summation

of the force-flux products [31,32].

1.2.2 Thermoelectric potential

Introducing the relative current density u defined3 as the ratio of electrical current density

j to the Fourier fraction of the heat flux qκ with respect to the flow direction of j = j n

u = − j ·n
κ ∇T ·n

resp. 1/u = −κ ∇T · j
j · j

. (1.6)

Note again that the fluxes are in parallel and Eq. (1.6) is just the ratio of the projections

onto the direction of the fluxes. Alternatively you can choose your coordinate system such

that the flux direction is similar to one axis. Heat and particle fluxes can be combined giving

q = Φ j =

[
αT +

1

u

]
j , (1.7)

3The gradient ∇T is a vector; avoid therefore the definition u = − j
κ∇T , instead use the 1D variants

u(x) = − j
κT ′(x) resp. u(T ) = − j

κ
x′(T ). For a more general definition of u see footnote 13.
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1 FGM TE generator and cooler

where Φ is the thermoelectric potential as defined by Snyder [100,101,165,166,168,169,176].

These expressions allow a simple derivation of the volumic heat production νq from

νq = ∇ ·q = j · ∇Φ = j · ∇
[
αT +

1

u

]
. (1.8)

Then we directly obtain the heat production density from the degradation of the potential

Φ. Since the entropy flux is jS = Φ j/T , the volumic entropy production becomes

νS = ∇ · jS = j · ∇
(

Φ

T

)
or νS =

νq
T

+ q · ∇
(

1

T

)
. (1.9)

This is in agreement with the classical Onsager formulation where the volumic entropy

production is given by the summation of the flux-force product. Then, for a given material,

the Φ potential gives a direct measure of the total volumic heat and entropy production

by the respective degradation of ∇Φ and ∇
(

Φ
T

)
. From these latter expressions we see that

Φ is the correct thermodynamic potential for characterizing thermoelectric processes and

systems, respectively.

1.2.3 Local reduced efficiency of TEG and TEC

Following [166], Section 9.2.2. and [156] we can conclude that the local performance of an

infinitesimal segment of a TE element of length dx with dT = T ′(x) dx can be defined as

ηloc =
dT

T
ηr and ϕloc =

T

dT
ϕr , (1.10)

where dT/T is the infinitesimal Carnot cycle factor for TEG and T/dT the one for TEC.

As the Carnot process is a reversible one, the reduced ”efficiencies”4 ηr and ϕr play the role

of an ”irreversibility factor” which at least measures the distance to reversibility for both

TEG and TEC due to a non-perfect TE engine. Such considerations were published first by

E. Altenkirch [2, 3].

The reduced efficiency of a thermogenerator ηr is defined as the ratio of the products of

conjugated forces and fluxes [168] where we have to pay attention to the fact that the

electrical power production in a volume dV is given by the production density πel = j ·E,

also denoted as differential electrical power. Note that the net differential power output is

4In [156] and [159] reduced efficiencies η
(g)
r ≡ ηr, η(c)r ≡ ϕr are introduced for both TEG and TEC, resp.
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1.2 Thermodynamics and entropy production

given by −πel, see the definition of efficiency in Section 1.3 and [122,153,158]. From Eq. (1.5),

we find j ·E− TνS = 1
T q · ∇T = jS · ∇T , and with j ·E = ∇ ·q = j · ∇Φ and jS = Φ j/T we

finally get

ηr =
j ·E

jS · ∇T
=

−πel

−πel − TνS
=

1

1 + TνS
πel

=⇒ ηr =
T

Φ

∇Φ · j
∇T · j

, (1.11)

which coincides with Clingman’s result [35] and corresponds to the reduced variation of the

thermoelectric potential ∇Φ
Φ when changing the other potential ∇TT which is coherent with a

general definition of the efficiency of an out-of-equilibrium thermodynamic process of coupled

fluctuating parameters. The reduced efficiency expression can be rewritten from u and Φ

expressions, i.e. with u = 1
φ−Tα and ∇Φ · j

∇T · j = α(1− α
z u) resp. u = − z

α2
∇Φ · j
∇T · j + z

α [166,168].

The result is for TEG

ηr =
1− uα

z

1 + 1
uTα

=
uα
z

(
1− uα

z

)(
uα
z + 1

zT

) (1.12a)

or

ηr =
1− α

z(Φ−Tα)

1 + z(Φ−Tα)
zTα

=
αT

Φ

(
1− 1

zT ( Φ
αT − 1)

)
. (1.12b)

An analogous approach can be found for the reduced coefficient of performance of a TEC,

ϕr. As a consequence of the underlying TE effects (which are inverse to each other, and

alike are the definitions of the global performance parameters, efficiency η and coefficient of

performance ϕ)5, the reduced coefficient of performance ϕr is inversely defined

ϕr =
jS · ∇T
j ·E

=
Φ

T

∇T · j
∇Φ · j

. (1.13)

For a direct comparison of TEG and TEC we recommend a unified 1D model for both

generator and cooler single elements [156]. Note that u(T ) differs formally only by sign

if TEG and TEC are operated under reversed boundary temperatures, but otherwise in

the same working conditions. For this case of directly comparing TEG and TEC we find

formally ϕr = 1/ηr, and the reduced efficiencies present a maximum for u = s; where s is

the compatibility factor [168] uopt = s(g) =
√

1+zT−1
αT of a TEG, but uopt = s(c) = −

√
1+zT−1
αT

5We follow Sherman’s notation here and use ϕ instead of C.O.P. in TEC formulae.
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1 FGM TE generator and cooler

of a TEC.

The reduced efficiency and local coefficient of performance are defined as functions of u

in their ranges of typical use (0 ≤ u ≤ 2 s(g) for TEG and 2 s(c) ≤ u ≤ 0 for TEC).

In the special situation of maximum local TEG efficiency (u = s(g) > 0) and maximum

local TEC coefficient of performance (u = s(c) < 0) the two values are equivalent ηr,opt =

ϕr,opt =
√

1+zT−1√
1+zT+1

, as ηr and ϕr are local irreversibility factors. This again shows that z T is

a thermodynamic materials quantity determining the maximum irreversibility factor that is

the same for both interrelated thermoelectric effects, Seebeck and Peltier.

The equivalent optimal TE potential is given by

Φ
(g/c)
opt = αT +

1

s(g/c)
= αT

[ √
1 + zT√

1 + zT ∓ 1

]
, (1.14)

where the minus sign applies for TEG, but the plus sign for TEC. Furthermore we find

ηr,opt =

(
2

Φ
(g)
opt

αT
− 1

)−1

and ϕr,opt = 2
Φ

(c)
opt

αT
− 1 .

The total efficiency η and the total coefficient of performance ϕ, resp., of a finite generator

and a cooler element, resp., are obtained by summing up local contributions based on the

reduced efficiency all over the thermoelectric element in an integral sense, see Eqs. (1.31a)

and (1.31b). The particular case of maximum performance of an infinitely staged6 TEG and

TEC has been investigated by Sherman and co-workers [160,161], see Section 1.6.1.

1.2.4 Thermodynamic optimization

For each TE device is known that the current has to be adjusted to an optimal value to reach

maximum efficiency or coefficient of performance, resp. The thermodynamic background

is explained here. The local treatment leads to an additional requirement concerning TE

element design. In Fig. 1.2 we compare the reduced efficiency ηr of a TEG for varied values of

the dimensionless figure of merit z T with the optimal reduced efficiency ηr,opt (see also [62]).

One can notice that, for a given element, the maximal efficiency can be obtained if the

electrochemical potential and the temperature are biased in order to reach Φ = Φopt all over

the system. This ”thermodynamic biasing” shows the importance of the working conditions

6The device (or TE element) is broken up into an infinite number of stages. Note that the terms ”perfectly
infinitely staged element” and ”self-compatible element” as introduced below can be used synonymously.
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1.2 Thermodynamics and entropy production

Figure 1.2: Reduced efficiency (irreversibility factor) for TEG as a function of the thermo-
electric potential (in units of αT ) Φ/(αT ).

of the thermoelectric engine, even at the local scale. As a consequence from Eq. (1.14),

FGM must be optimized from the material’s point of view, leading to a z T (T ) as large as

possible, but also from the working conditions point of view. This means in particular that

the temperature distribution has to be adjusted to optimum shape. Otherwise the reduced

efficiency of each cell (or segment) of a FGM will never reach its maximal attainable value

simultaneously.

To sum up, we can draw three conclusions:

1. Simply adjusting maximum z T in each segment of graded TE elements is not sufficient

to maximize TE device performance because the operation conditions at each position

in the element cannot be adjusted independently from each other but are interrelated

by the global condition of a common electrical current crossing each segment of the

element.

2. Optimizing the temperature dependence of the material, i. e. α(T ), σ(T ), κ(T ), is ap-

plicable to achieve the maximum local efficiency expected from the z T in each segment

of a chemically homogeneous element simultaneously. The compatibility approach is

sufficient to achieve this, as will be described below.

3. FGM have to be optimized from a thermodynamic point of view. This should include

consideration of the temperature and temperature gradient as will be demonstrated

in the next section. Suitable adjustment of α(x), σ(x), κ(x) implies suitable shaping

of the temperature profile.
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1 FGM TE generator and cooler

1.3 Material profiles and performance parameters in the 1D

steady state

The reduced ”efficiencies” in our one-dimensional approach are given by

ηr(x) =
1

ϕr(x)
=

Φ′(x)/Φ(x)

T ′(x)/T (x)
with Φ(x) = α(x)T (x) +

1

u(x)
. (1.15)

Eq. (1.15) makes clear that the compatibility approach together with additional thermo-

dynamic arguments opens up new opportunities for optimizing the material profiles, see

also [63] and Section 1.6.2.

However, before proceeding in this way, we should consider again the TE material properties

α, σ and κ which are in general temperature and position dependent quantities and mea-

surable under certain constraints. Here we want to concentrate on decoupled dependencies,

i.e. either a temperature or spatial dependence of the material coefficients, to gain ana-

lytical results for the performance parameters of a TE element. A numerical investigation

of a coupled material’s local as well as temperature dependence is given by Kaliazin and

co-workers [82].

Given the material properties as a function of temperature, Eq. (1.3) reduces in the 1D

steady state to

κ(T )
∂2T

∂x2
+
dκ

dT

(
∂T

∂x

)2

− j T dα

dT

∂T

∂x
= − j2

σ(T )
, (1.16)

where a constant current density j is supposed to flow in x-direction (see e.g. [154]).

It is important to note that if there is a ”one-to-one correspondence” of temperature T and

position x, the temperature profile is a continuous and strictly monotonous one (with that

a bijective function). This especially applies for maximum η and maximum ϕ if constant

or real, temperature dependent, material properties are considered.7 Then, there exists an

inverse function x(T ) corresponding to T (x) and vice versa. If these conditions are fulfilled,

Eq. (1.16) can be transformed into

d

dx

(
−κ(x)

dT (x)

dx

)
+ j T (x)

dα(x)

dx
=

j2

σ(x)
(1.17)

7Within CPM we find for the slope of the temperature profile at the sink side T ′(L) = 0 for the maximum
temperature difference (ϕ = 0), and T ′(L) > 0 for ϕ > 0. Note that the CPM is a suitable reference for
moderately temperature dependent material properties.
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1.3 The 1D steady state

with σ(x) = 1/ρ(x). Identical temperature profiles T (x) are calculated from Eqs. (1.16) and

(1.17) if spatial material profiles over the length of the TE element are given by α(x) =

α[T (x)], σ(x) = σ[T (x)], and κ(x) = κ[T (x)].

It is common knowledge that the material properties, especially those of semiconductors,

highly depend on the carrier concentration which can be influenced by appropriate doping

agents or a variation of the chemical composition [38,39,50,58,75,80,81,86,94,95,106,143,144,

167]. Controlling the carrier concentration gives in principle the opportunity to get a spatially

dependent material even if the temperature dependence is neglected [182,183]. This approach

can be generalized for FGM. All material parameters may then depend not only on the

temperature, but also on the local material quality which can be practically the composition

of an alloy or the concentration of a dopant. Symbolically, for example representing the

concentration of a single doping species or alloying element, the local material quality can

be denoted by a concentration variable c. Thus, the gradient of the Seebeck coefficient α is

e.g. [70]

∇α = ∇ α |T=const +
∂α

∂T
∇T

leading to

=⇒ ∇α(T, c) =
∂α

∂c

∣∣∣∣
T=const

∇c+
∂α

∂T

∣∣∣∣
c=const

∇T .

For the 1D case, and the x-coordinate used, the gradient of Seebeck can simply be written

as ∇α = dα/dx ex if the single element profiles c(x) and T (x) are known:

α(x) = α [c(x), T (x)] .

These considerations have been the reason for establishing the spatial coordinate as the

independent coordinate for an empirical approach to 1D, steady-state problems with graded

materials. Naturally, Eq. (1.17) can also be used as an independent differential equation when

the spatial dependence of the material parameters α(x), σ(x), κ(x) is of prime interest, see

e. g. [18, 107,108,154,157].

We want to remark here that the differential equation (1.16) is nonlinear whereas Eq. (1.17)

containing spatial material profiles is linear in T which opens broader opportunities for

13



1 FGM TE generator and cooler

finding analytical solutions and applying the principle of superposition.

Once having calculated T (x), all performance parameters of interest can be determined as

a function of the electrical current density j, e.g.

• TEG: net power output density8 (electrical power output per cross-sectional area Ac):

pnet(j) = −p(j) = −P (j)/Ac = −
∫ L

0

[
ρ(x) j2 + j α(x)T ′(x)

]
dx ,

where P is the electrical power output, p is the corresponding density.

• TEC: cooling power density (absorbed heat per time and cross-sectional area):

qa(j) = Qa(j)/Ac =
[
−κ(x)T ′(x) + jα(x)T (x)

]
x=0

,

where Qa is the cooling power (absorbed heat per time unit).9

• TEG: efficiency η(j) = pnet(j)/qa(j)

• TEC: coefficient of performance ϕ(j) = Qa(j)/P (j) = qa(j)/p(j).

Concerning notation we refer to [157]. For fixed material profiles (given gradients), the

optimum current density can be calculated from the maximum of the device performance.

For example, for arbitrary continuous monotonic gradient functions of the material profiles

α(x), σ(x) and κ(x), the calculation of the temperature profile has been done numerically

up to now either by a 1D finite element method code (1D TE FEM) or the algorithm of

multisegmented elements as well as other approaches, see e.g. [10, 11, 18, 19, 72, 74, 82, 123,

127,156,160,161] and section 1.5.1

There is no doubt that global maximization of a performance parameter of the element

as an integral device is a suitable guideline for an empirical approach to numerical device

optimization, see e.g. [38,39]. The target of 1D TE FGM research, however, is to find a set

of optimal profiles α(x), σ(x), κ(x) for maximizing the performance of TE devices. Here we

make use of the fact that analytical solutions of the generalized heat equation, Eq. (1.17),

can be found for spatially linear material profiles (see section 1.5.2). These can actually be

used as the starting point for finding more general optimal material profiles (regarding the

profile shape).

8Power output is defined here according to thermodynamic rules: quantities put into the system are positive.
9Note that the dot for the time derivative is often omitted Qa ≡ Q̇a.
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1.4 The maximum thermoelectric performance

Further on we will refer to the efficiency η of a thermogenerator (TEG) and to the coefficient

of performance ϕ of a Peltier cooler (TEC), because maximization of these global device

parameters can be deduced to local optimization, see [159] and section 1.6. The power output

(TEG) and the pumped heat (TEC) have to be treated separately (see section 1.8).

1.4 The maximum thermoelectric performance

Throughout thermoelectric modeling, TE performance was initially considered assuming

temperature independent materials. The Constant Properties Model (CPM) is an adequate

as well as historical reference for comparing both thermoelectric materials and devices.

1.4.1 Maximum performance

The efficiency η of a TEG and the coefficient of performance ϕ of a Peltier cooler can

be calculated from the temperature dependent material parameters of n-type and p-type

elements, geometry, current, thermal and electrical contact resistances [166] from suitably

defined global averages of TE quantities

Here we define the thermoelectric device figure of merit Z T in contrast to the materials

figure of merit z T [60] using the well-known formulae for maximum efficiency and coefficient

of performance for constant material properties [30,50,54,60,71,75]

ηmax =
Ta − Ts

Ta

√
1 + ZT − 1√

1 + ZT + Ts/Ta

(1.18a)

and

1

ϕmax
=
Ts − Ta

Ta

√
1 + ZT + 1√

1 + ZT − Ts/Ta

, (1.18b)

where Ta = Th and Ts = Tc for TEG and Ta = Tc and Ts = Th for TEC. Given a maximum

performance value one can subsequently solve for the device figure of merit Z T . For a

precise definition, the values of Ts and Ta as well as whether the device is TEC or TEG

must be specified - usually the T in Z T is assumed to be Tm = 1/2(Ta + Ts). In general this

Z T also depends on the exact temperature dependent materials properties, exact geometry,

even including non-idealities such as electrical and thermal losses (e.g. contact resistances,

parasitic losses) and non-optimized geometric parameters. However since even the ideal CPM
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1 FGM TE generator and cooler

model requires electrical current optimization to achieve the maximum efficiency determined

by Z T , the current should be adjusted (experimentally or theoretically) to achieve maximum

efficiency when using this definition of ZT . For an ideal single element without parasitic

losses the device Z T is equal to the material’s z T within the framework of the CPM.10

1.4.2 Approximating effective device figure of merit

For an actual thermoelectric module, where the exact properties, dimensions and interfaces

of all the materials involved are not known, exact quantitative description as a device is

restricted to the measurable parameters related to the TE material properties α, σ and κ:

the device effective Seebeck coefficient αeff, electrical resistance R and thermal conductance

K. The exact procedures for measuring αeff,K,R are not universally accepted [20, 21, 24,

46, 47, 65–67, 69, 76, 77, 83, 86–88, 125, 128, 133, 137–139, 151, 170] and therefore do not give

exactly the same results. Nevertheless such values can be used to define an effective Zeff T

as

Z T = zeff T =
α2

effT

RK
(1.19)

where it is common to use T = Tm. A good thermoelectric material is characterized by a

large Seebeck coefficient to produce the thermoelectric voltage, a low thermal conductivity

for limiting the dissipative Fourier heat flow throughout the device exposed to a temperature

gradient and a low electrical resistivity (high electrical conductance) to minimize Joule’s

heating. Altogether these conditions are combined into the figure of merit [50, 54, 60, 60,

61, 70, 71, 75, 84, 147–149, 180]. By definition, see Eq. (1.18), two devices with the same

Z T (operated under the same conditions) have the same performance. Two devices with

the same or similar Zeff T should reach similar performance to each other under similar

conditions (as both TEG and TEC) but they need not be exactly equal.

Physically, it may seem most justified to use averaged materials properties to estimate

the effective figure of merit and power factor feff such as

α2
eff

RK
=

α2
eff

[ρ(x)]av

[
1

κ(x)

]
av

and feff =
α2

eff

[ρ(x)]av

, (1.20)

10The formulae (1.18) can be derived straightforwardly by using Eqs. (9)–(12) in [157], as well as within the
symmetric CPM model where the n-leg and p-leg have equal properties with opposite Seebeck coefficients.
In [157] you may also find the CPM formulae for the appropriate optimal current densities.
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1.4 The maximum thermoelectric performance

with

αeff = α, R =
1

A

∫
ρ(x) dx =

L

A
[ρ(x)]av , and

1

K
=

1

A

∫
1

κ(x)
dx =

L

A

[
1

κ(x)

]
av

, (1.21)

but also other formulations are used. Note that the overbar in Eq. (1.20) corresponds to the

average over temperature. For details of the averaging see next subsection.

1.4.3 Averaging the material profiles

At this point, we refer to a great variety of scientific work in experimentally measuring

or determining the temperature dependence of the material coefficients, for an overview

see [25,67,68,70,75,118,147,148,165,167,172,177] and references therein.

The quantities z T and Z T are used here as single quantities in contrast to the traditional

use of z or Z with units of K−1 (the traditional ”figure of merit”). The dimensionless form

is more fundamental with z T always being found together in thermodynamic equations. In

CPM calculations, which are often applied for approximating the efficiency or coefficient of

performance even for spatial or temperature dependent material profiles (see e.g. [183]), T

is a reference temperature or an average of Ta and Ts. There is no doubt that z T is the

”true” figure of merit from the thermodynamic point of view.11

As early as in 1957 Ioffe considered that there are mainly two possibilities for averaging TE

material properties in devices [75]: firstly, the average over space (denoted with the index

”av”) and secondly, the average over the temperature scale which is denoted here with an

overbar. Both can be related to each other if the temperature profile is monotonous, e. g.

for Seebeck

α =
1

Ts − Ta

Ts∫
Ta

α(T ) dT =
1

L

L∫
0

α(x)
T ′(x)

(Ts − Ta)/L
dx

≈ 1

L

L∫
0

α(x) dx = αav ,

11Note that there is no apparent upper limit to z T although maximum z T has been discussed by several
authors [51, 59, 103, 104, 141, 178]. Already Harman and Honig derived zT < 18 from the viewpoint of
elementary transport theory, see [70] on page 304.
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1 FGM TE generator and cooler

if α(x) = α[T (x)], i.e. if there is no explicit spatial dependence.

Note that
∫ L

0 T ′(x) dx =
∫ Ts
Ta
dT = Ts − Ta; therefore the function LT ′(x)/(Ts − Ta) varies

around unity, and both averages are close together for moderate gradients. Further note

that both averages coincide in general for a linear temperature profile, but also for the CPM

although it is linked to a particular non-linear profile (parabola). For temperature dependent

material Ioffe suggested

ρav = ln

(
Ta

Ts

) Ts∫
Ta

ρ(T )
1

T
dT .

as an averaging formula for the resistivity. He stated there that the majority of the semi-

conductors have ρ T−n =const. as the temperature dependence of the resistivity. For that

you get

ρav =
1

n
ln

(
Ta

Ts

)
(ρa − ρs) ,

see page 62 in [75]. The different averaging procedures are further discussed below in the

context of the figure of merit.

For non-planar shaped elements, e.g. ring-shaped elements, see [97–99, 102, 111, 113, 140],

where the current flows are not one-dimensional, the product of RK is independent of the

shape. So does the effective figure of merit, see Eq. (1.19). This can be shown, e.g. with the

relation

RK = κ ρ =
κ

σ

for an ideal single and prismatic element, where the global parameters resistance R = ρ L/Ac

and thermal conductance K = κAc/L are correlated to the local ones (κ, ρ = σ−1), see

e.g. [54] on p. 127.

Doubtless, a method of approximating the device figure of merit Z T from the materials

data is necessary for temperature dependent or spatially dependent material to estimate

the performance as given above, see Eq. (1.18). Typically averaged values are used. In

most cases either all material parameters are taken as temperature dependent (spatially

dependent) or all are averaged. Averaging over space might seem adequate as the graded

element is considered as a serial connection of segments. On the other hand, averaging over
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1.4 The maximum thermoelectric performance

T is very practicable since it does not require knowledge of the temperature profile but can

be simply deduced from temperature dependent material properties.

Formally, zav can be calculated by averaging α2 σ/κ locally with respect to temperature

or space or from individual averages (over temperature resp. over space) of each material

profile which would lead to zav = α2
av σav/κav for the purpose of easy analytical treatment. The

latter has been done for example by Kaliazin and co-workers [82]. Alternatively, Ioffe [75],

Moizhes [119], Borrego [22,23], and Efremov/Pushkars [49] defined

zeff =
(α)2

(ρ κ)
=

(∫ Ts
Ta
α(T ) dT

)2

(Ts − Ta)
∫ Ts
Ta
ρ(T )κ(T ) dT

, (1.22)

an averaging which we also recommend for purely temperature dependent material proper-

ties. The formula is obtained starting with the calculation of the temperature distribution

for the idle case (j = 0), where you find from the thermal energy balance (1.16) that the

heat flux is a constant and it follows that

q L =

L∫
0

κ
dT

dx
dx =

Ts∫
Ta

κ(T ) dT = κ∆T,

where ∆T = Ts − Ta.12 So you find in the absence of a current that the heat flux becomes

Q = κAc
∆T

L
= K ∆T ⇒ K = κ

Ac

L
.

The overall resistance of the TE element can be easily obtained

R =
L

Ac
ρav =

1

Ac

L∫
0

ρ(x) dx =
1

Ac

Ts∫
Ta

ρ(T )
dx

dT
dT

=
L

κAc

1

∆T

Ts∫
Ta

ρ(T )κ(T ) dT

⇒ R =
ρ κ

κ

L

Ac
.

Thus we find for the locally averaged resistivity ρav = ρ κ/κ which is nothing else than a

weighted average of the (temperature dependent) resistivity by the (temperature depen-

12Note that the sign of ∆T can be both positive or negative depending on how the TE element operates
(TEG/TEC).

19



1 FGM TE generator and cooler

dent) thermal conductivity. The product RK is then the temperature average over the

product of (temperature dependent) resistivity and thermal conductivity ρ κ. It is stated

by the authors [23, 49, 75, 119, 184] that Eq. (1.22) is valid only for the zero current limit

but the use of these averaged properties still results in meaningful estimates of the device

performance. Of course the exact method is to calculate the performance as described in

section 1.4.1

Min and co-workers also highlighted a method to calculate an effective Zeff T , especially if

large temperature differences are present [116].

The concept of effective figure of merit and power factor had been discussed in the framework

of composite materials as the so called effective medium theory [15–17,73,85,96,164,171,181].

In all of these cases a random distribution of different materials is supposed. It was found

that this can enhance the power factor but not the efficiency of the TE material. This is

clearly different from the situation as discussed here where we haven’t got a random inho-

mogeneity but a directed grading or segmentation.

1.5 Model-free setup based on spatial material

profiles

In this section, a setup is used where an independent and free variability of the spatial

material profiles α(x), σ(x) and κ(x) is assumed primarily, and where the temperature

profile T (x) can be calculated directly from Domenicali’s thermal energy balance [45]. For-

mula (1.17) is rewritten here as

κ(x)T ′′(x) + κ′(x)T ′(x)− j α′(x)T (x) = −ρ(x) j2 . (1.23)

Once knowing T (x), all application-relevant device properties and performance parameters

can be derived. Executing the calculation in a loop while varying the current allows to select

optimum operation parameters (optimum load resistance and current, resp.) and deduce

maximum performance values.

The aim of such investigations is to identify optimum combinations of material gradients

along a graded generator or cooler element. However, the practical accessibility of optimum

gradient schemes is limited by the constraint of maximum z T of available materials, by the
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1.5 Spatial material profiles

magnitude of the compositional gradient (extremely steep profiles are difficult to prepare in

a controlled manner), and by interrelations between the thermoelectric properties due to the

solid state nature of the TE materials, for example, the Wiedemann-Franz law connecting

electronic part of thermal conductivity and electrical conductivity.

1.5.1 Parameter studies via numerical calculations

Fundamental parameter studies [123, 126] have demonstrated quantitative improvement of

performance achievable by material grading. Numerical calculations were based on the afore-

mentioned model-free setup applying arbitrarily but suitably chosen continuous monotonic

gradient functions for all material profiles (see e.g. [124])

y(x) = ya +
1− exp(ky x/L)

1− exp(ky)
(ys − ya) , y = α, σ, κ (1.24)

which fix the values ya and ys at the absorbing and sink side, resp., but allow to vary the

curvature by the numerical parameter ky. It was found that best performance is achieved

close to linear profiles in certain cases (see Fig. 1.3), whereas an unfavorable combination

of slopes such as strong gradients of α and σ oriented in parallel lead to a significant drop

of the performance. Further it is worth mentioning that, related to the higher optimum

Figure 1.3: Variation of the maximum ϕ of a TEC for Ta = 280 K, Ts = 300 K (left) and
maximum efficiency of a TEG for Ta = 600 K, Ts = 300 K (right) plotted versus
the chosen constant gradients of the Seebeck coefficient and electrical conductiv-
ity (see also [123]); under the constraint of (z T )av = const.; double-logarithmic
plot: log2(αa/αs) (abscissa), log2(σa/σs) (ordinate) in both figures; The inner
frame marks the region of small to moderate gradients. The gray-tone back-
ground indicates the maximum z T which is found locally within the respective
gradient configuration. For the calculation we chose αav = 180 µV/K, σav =
140000 S/m and κav such that the spatial average of the figure of merit is unity,
i.e. (z T )av = 1.

current density, achievable effects are larger for Peltier coolers than for a TEG although the
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1 FGM TE generator and cooler

operating temperature difference was assumed much larger for generators. The strongest

improvement for Peltier elements can be achieved at the maximum temperature difference

if steep material gradients are selected. Concerning a detailed discussion we refer to [123,126].

1.5.2 Analytical solution based on linear material profiles

Variation restricted to linear spatial material profiles provide hints to favorable configura-

tions of material profiles that deliver optimum performance. The linear properties model

(LPM) is – as well as the constant properties model (CPM) – of course limited in compar-

ison with real temperature dependent materials, but it can give hints, e. g. for optimized

stacking schemes.

Investigations based on linear spatial profiles have already been done in the mid-1960’s by

Ybarrondo et al. [182,183]. Although they could give an analytical solution for the tempera-

ture profile (for a TE cooler with mixed boundary conditions), the performance couldn’t be

determined quantitatively by them due to the lack of suitable computation tools. Therefore

we revisit the corresponding solutions in particular to gain information about the influence

of the slope of the material parameters on the performance, and we calculate the corre-

sponding optimal values in our particular case of linear spatial profiles as an interesting

example of FGM.

Assuming linear profiles, the thermal energy balance (1.23) can be written in the notation

[a(κ) ξκ + b(κ)x] T ′′(x) + b(κ)T ′(x)− j b(α)T (x)

= −j2 [a(σ) ξσ + b(σ)x]−1 (1.25)

using the abbreviations

ξy =
ya
ys
, a(y) =

2 yav

1 + ξy
, and b(y) =

2 yav

L

(1− ξy)
(1 + ξy)

=
∆y

L

with y = κ, σ, α. It is obvious that b gives the appropriate slope of the material profile,

e. g. κ′(x) = b(κ). As free parameters for the linear profiles of the material we chose the

fixed spatial average yav to compare with CPM and the grading parameters ξy. Note that

there is another form of writing the material profiles with the chosen abbreviations, e. g.

κ = a(κ) ξκ + b(κ)x, with ξκ = κa
κs

being a primary characteristics of the linear profile. To
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1.5 Spatial material profiles

get the Bessel equation from the homogeneous part of the thermal energy balance we further

use the substitution

w(x) = −2

√
−j b(α)

b2(κ)

√
κ(x)

= −2L

√
j(αa − αs)
L(κs − κa)2

√
κ(x) ≡ A

√
κ(x) (1.26)

leading to T ′′(w) + w−1 T ′(w) + T (w) = 0 for the homogeneous part of Eq. (1.25) which

is equivalent to a Bessel differential equation of order 0 (after multiplying with w2). The

completely transformed inhomogeneous differential equation is finally [186]

T ′′[w(x)] + w−1(x)T ′[w(x)] + T [w(x)] =
j

b(α)σav
. (1.27)

The temperature profile is found in terms of Bessel functions Y0(w), J0(w) with w given by

Eq. (1.26) for the general case ξα 6= 1, ξσ 6= 1, ξκ 6= 1

T (x) = C1 Y0[w(x)] + C2 J0[w(x)]+

πj2L

∆κ

[
J0[w(x)]

∫ L

0

Y0[w(x)]

σ(x)
dx− Y0[w(x)]

∫ L

0

J0[w(x)]

σ(x)
dx

]
. (1.28)

The free constants C1 and C2 can be fixed according to the given boundary conditions. For

an overview on Bessel functions we refer to standard textbooks [1, 109]. The tables of all

particular solutions of Eq. (1.27) are given in the appendix of [186].

Although the CPM as well as the LPM cases appear physically simple, these are not at all

simple from the point of view of materials’ fabrication [38, 39, 94, 95]; the question how to

obtain TE materials with linear material profiles is still an open issue.

1.5.3 TEG performance optimization via linear grading

Once the temperature profile T (x) throughout an element has been calculated, the per-

formance parameter, e.g. power output density p and efficiency η of a thermogenerator

depending on the electrical current density j and the grading parameters ξα, ξσ and ξκ can

be determined and can consequently be optimized according to the variation of these. Con-

sidering power output here, we find Eq. (1.29) for a constant electrical conductivity (ξσ = 1),

which is supposed to be in the vicinity of the maximal performance, after integration by
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parts [185]

p ≡ p(j, ξα, ξκ) = −j
2 L

σav
− j 2αav

1 + ξα
[Ts − Ta ξα − (1− ξα)Tav] (1.29)

with Tav = L−1
∫ L

0 T (x) dx. In Eq. (1.29) the grading of κ enters through that spatial average

of the temperature Tav. Here, the particular case of having only one linear profile for the

Seebeck coefficient (ξα 6= 1) shall be shortly discussed. For that the material parameters are

chosen as αav = 180 µV/K, κav = 1.35 W/m K and σav = 140000 S/m, exemplarily. Thus

z T at T = 300 K equals approximately 1. In the CPM case, a simple extremal problem to get

optimum current densities jopt leading to the optimal value of the performance parameter

pmax and ηmax has to be solved, whereas for LPM one ends up with a multidimensional

extremal problem with a system of equations leading to the optimum current densities

jopt and grading parameters ξopt. Both TEG performance parameters are displayed in the

Figure 1.4: Performance parameter in dependence of j and ξα for Ta = 600 K and Ts =
300 K, L = 5 mm. The other two grading parameters ξκ and ξσ are set to unity,
i.e. σ and κ are constant; left: electrical power output density p in W/cm2,
right: efficiency η in %. In comparison to Fig. 1.3 there is no constraint for z T
in this calculation. We fixed the material parameters to αav = 180 µV/K, σav =
140000 S/m and κav = 1.35 W/m K.

Fig. 1.4 for a TE element of length L = 5 mm and a temperature difference of ∆T = 300 K.

The results for CPM and LPM are compared in table 1.1.

By linear grading of α both the power output and the efficiency can be slightly increased.

As for CPM the optimal parameters are different, depending on what has to be optimized,

p or η, but we find the same tendency in the optimization strategy. Obviously, there is only

a slight increase when assuming κ = const.; with linear profiles α(x) and κ(x) the increase

of power output and efficiency in the TEG case is more pronounced, see [185–187].
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1.6 Compatibility and optimal grading

The same effect is expected for the TEC case with linear profiles α(x) and σ(x). Note that

Table 1.1: Values of the optimum performance parameters for the given material

Maximum output power output density Maximum efficiency
jp,opt[A/cm2] ξα,opt pmax[W/cm2] jη,opt[A/cm2] ξα,opt ηmax[%]

CPM 75.6 1 2.041 58.5 1 14.03
LPM 76.1 0.85 2.048 59.0 0.67 14.19

all of these conclusions are found supposing fixed spatial averages of α, σ and κ as a limit

to the material performance. Hence, in the light of the following has to be mentioned that

the optimum configurations which exceed the CPM in performance are bound to a slightly

higher zeff, see Eq. (1.20), than in the CPM case. This applies both to the results given

in Figs. 1.3 and 1.4. The observed non-symmetry is mainly founded in the non-symmetric

contribution of α (squared) and σ (linear) to the figure of merit. This is another, numerical

evidence on the conclusion of section 1.4.2 and 1.4.3 that fixing the spatial averages of α, σ

and κ is not a physically justified reference of ”equally good” material, neither is the fixing

of the spatial average of z T as was applied in the calculations for Fig. 1.3.

1.6 Compatibility approach and optimum material grading

In 2002/2003 Snyder and Ursell [168,169,176] introduced the compatibility factor as a second

characteristic besides the z T for optimizing the performance of TE devices. By introducing

the relative current density u and the reduced efficiency ηr (see Section 1.2), the thermoelec-

tric power generation could be formulated at first at the level of intensive state variables.

Building on earlier investigations dating from the 1960’s [35, 50, 70, 120, 135, 160, 174, 183],

this concept has been further developed in successive works [53, 100, 101, 155–157] on the

basis of a one-dimensional, stationary and unifying model with material grading for the

thermogenerator and the Peltier cooler.

The compatibility approach is an alternative to Ioffe’s description using global power terms

which is very often used for technological applications, but is certainly not suitable for lo-

cally characterizing TE processes or even for local optimization purposes.

The advantage of using the relative current density is that the multidimensional TE prob-

lem can be reduced to a one-dimensional heat flow problem13 formulated in u(T ) where the

13 For the history of local definition of efficiency see also [120]; in [64] the three-dimensional vector version
is presented. A more general definition of u seems possible when writing the relative current density in
terms of fluctuating currents which are indeed 3D.
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1 FGM TE generator and cooler

governing equation can be evaluated from the thermal energy balance [168]

d

dT

(
1

u

)
= −T dα

dT
− uρκ or u′(T ) = τ u2 + ρκu3 , (1.30)

alternatively, with the Thomson coefficient τ(T ) = T dα/dT . Basically, Eq. (1.30) describes

a homogeneous TE element with temperature dependent material properties, whereby (1.30)

holds for both the ”pump up” (T ′(x) > 0) and ”pump down” (T ′(x) < 0) cases.14 Further

note that TEG and TEC cases are only distinguished by the sign of u(T ) if the same (tem-

perature dependent) material properties, the same current density, but reversed boundary

temperatures Ta and Ts are applied (Ta > Ts for TEG, but Ta < Ts as usual for TEC).

Meanwhile it has been shown that sufficient compatibility is – besides a high figure of merit

zeff – essential for efficient operation of a TE device, and that compatibility will facilitate ra-

tional materials selection, device design and FGM engineering, see e.g. [53,100,101,127,165,

166,176]. Currently, compatibility factors s = uopt are available for performance parameters

arising from the local contribution to the TE material; these are:

• TEG: compatibility factor for maximal electric power (s(g,P) or s(P)) [155]: s(P) = z
2α

• TEG: compatibility factor for maximal η (s(g)) [168]:

s(g) =
√

1+zT−1
αT

• TEC: compatibility factor for maximal ϕ (s(c)) [156]:

s(c) = −
√

1+zT−1
αT

The importance of the compatibility approach has been demonstrated first for a segmented

thermoelectric generator [166,168,176]. Snyder pointed out that, if the compatibility factors

in segmented devices with given material differ by a factor of 2 or more, the maximum

efficiency of a TEG can in fact decrease by segmentation. Compatibility is therefore of

essential importance for a rational material selection in segmented devices.

Alternatively, compatibility can be considered in the same material [168, 169, 176]. One of

the major objectives in FGM research is to find optimal graded TE elements [so called self-

compatible elements, where u(x) ≈ s(x)] to achieve maximum performance. Sherman and

co-workers [160] referred to perfectly infinitely staged material which gives the maximum

efficiency or coefficient of performance. Within the new concept of self-compatibility the

14Erratum: [156] Eq. (9), right hand side, the ± sign has to be replaced by a minus sign valid for both the
pump up and the pump down situation.
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1.6 Compatibility and optimal grading

guidelines toward a perfectly infinitely staged, i.e. ideally self-compatible material are now

well defined. However because both z T and s depend on the same materials parameters,

a compromise between high z T and self-compatibility will need to be reached for true

optimization. Example calculations of self-compatible elements for maximum η (TEG) and

maximum ϕ (TEC) are presented in Section 1.6.2, concerning power-related compatibility

see section 1.8.

1.6.1 FGM and self-compatibility

The exact solution for η and ϕ with respect to temperature, i. e. for temperature dependent

material parameters are the following integrals taken from [159] for TEG:

ln(1− η) =

∫ Ts

Ta

K(u(T ), T ) dT with Ts ≤ T ≤ Ta , (1.31a)

and for TEC

ln

(
1 +

1

ϕ

)
=

∫ Ts

Ta

K(u(T ), T ) dT with Ta ≤ T ≤ Ts , (1.31b)

where we have one kernel K(u(T ), T ) for integrals of both generator and cooler

K(u, T ) =
1

T
ηr(u, T ) =

1

T

1

ϕr(u, T )
=

1

T

uαz (1− uαz )

uαz + 1
zT

=
α

z

(z − uα)

(u−1 + αT )
. (1.32)

Note that K contains the reduced efficiencies ηr for TEG resp. ϕr for TEC. Alternatively, the

integral kernel K can be formulated with the TE potential Φ, see Eq. (1.12). For this case,

Snyder [166,168] has shown that η is simply given by the relative change of the thermoelectric

potential with temperature variation; an analogous relation can be found for the coefficient

of performance (see [156])

η = 1− Φ(Ts)

Φ(Ta)
and ϕ =

(
Φ(Ts)

Φ(Ta)
− 1

)−1

. (1.33)

This result points to the importance of the TE potential as a function of state, for details

see also [63].

If we assume the feasibility to achieve complete self-compatibility (infinite staging) we can
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1 FGM TE generator and cooler

apply u = s(g) and u = s(c) to the integrals (1.31a) and (1.31b), respectively, so that they

take their maximal values with the optimal reduced efficiency ηr,opt = ϕr,opt =
√

1+z T−1√
1+z T+1

for

both TEG and TEC [75, 160]. Then fully self-compatible performance parameters ηsc and

ϕsc are given by

ln(1− ηsc) =

∫ Ts

Ta

ηr,opt

T
dT =

∫ Ts

Ta

1

T

√
1 + zT − 1√
1 + zT + 1

dT (1.34a)

and

ln

(
1 +

1

ϕsc

)
=

∫ Ts

Ta

1

Tϕr,opt
dT =

∫ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT (1.34b)

or, using Sherman’s notation15 [160]

ηsc = 1− exp

(
−
∫ Ta

Ts

1

T

√
1 + z T − 1√
1 + z T + 1

dT

)
(1.35a)

and

ϕsc =

[
exp

(∫ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT

)
− 1

]−1

. (1.35b)

We expressly emphasize, however, that the integrals (1.34) and (1.35) do not have extremal

properties concerning the z T value. Analytical expressions of these integrals can be found

for z = const. as well as for z T = const.; a summary of all integral approximations is pre-

sented in the appendix of [159]. The constraint z T = const. has proven to be advantageous

for the construction of self-compatible elements, see next section.

By using the transformation
∫ Ts
Ta

dT =
∫ L

0 T ′(x) dx with a monotonous T (x), we find equiv-

alent integrals with the kernel related to the spatial coordinate

K?(u(x), x) = K [u(T (x)), T (x)] T ′(x) . (1.36)

Analogous results are obtained from both formulations if α(x) = α[T (x)], σ(x) = σ[T (x)]

and κ(x) = κ[T (x)].

The integral representations for η and ϕ have been discussed in [159] within the framework

of variational calculus. It was found that the optimal u can only be transferred from T to

15Note that Sherman et al. used the function ε(T ) to denote the optimal reduced efficiency.
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1.6 Compatibility and optimal grading

x and vice versa if the optimal (and monotonous) temperature profile is known; the latter

must be consistent if u(x) = s(x) has to be fulfilled locally. Then, fully self-compatible

performance parameters ηsc and ϕsc are given with the integral kernel K? (see Eq. (1.36))

by the integrals

ln(1− ηsc) =

L∫
0

K?(s(g)(x), x) dx (1.37a)

and

ln

(
1 +

1

ϕsc

)
=

L∫
0

K?(s(c)(x), x) dx . (1.37b)

These considerations implicate that two strategies can be established to achieve Snyder’s

criterion u = s in a local sense, as the condition of self-compatibility, for all infinitesimal

segments of a TE element (within the interval 0 ≤ x ≤ L or Ta ≤ T ≤ Ts):

A) optimization based on Eq. (1.30) and the criterion u(T ) = s(T ), mainly used for

temperature dependent materials,

B) optimization based on Eq. (1.23) and the criterion u(x) = s(x) for FGM containing

an explicit dependence of the properties on x.

Consistent optimization results are obtained if equivalent material profiles are used. How-

ever, it is important to note that constraints or a performance limit must be regarded as

well, see Section 1.6.2 for an example.

A central problem is that only two governing equations are available for both optimiza-

tion strategies when referring to thermoelectricity from a phenomenological point of view.

They are, in general, not sufficient for calculating all three optimal material profiles. In

addition, the temperature profile T (x) has to be calculated in a consistent manner when

u(x) = s(x) is used as (thermodynamic) optimization criterion; it can be rewritten as a first

order differential equation for the optimum temperature profile based on the ”coordinate”

z T [157]

dT

dx
=

jo
σα

f(z T ) with f(z T ) =
z T

1±
√

1 + zT
. (1.38)
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The positive sign applies to the TEC (f = f (c)), but the negative one to the TEG (f = f (g)).

An optimization strategy referring to item B) has been proposed in [157]. It has become

apparent that self-compatible elements can only be constructed based on an optimum com-

bination of material profiles whereas there is not only a single, uniquely defined set of

α(x), σ(x), and κ(x) but a manifold with two degrees of freedom. Only one profile out of

the three properties can be calculated based on the optimization criterion found while two

material profiles can be specified arbitrarily to fix an optimum set. The remaining degrees

of freedom can be used, e. g., to involve interrelations between the thermoelectric properties

due to solid state nature of the TE materials. This strategy has been tested in [157] with

presumed constant gradients of α and σ having opposite directions, and the thermal con-

ductivity κ has been optimized.

From first results published in [157] it can be concluded that there is only a little reserve for

TEG performance improvement when using optimized material gradients, but much more

potential for the performance improvement of a TEC. However, we should emphasize here

that the choice of the given profiles determines greatly the increase in performance from

the effect of the self-compatibility: Optimization should be based on preset profiles α(x)

and κ(x) for TEG, but on profiles α(x) and σ(x) for TEC. In any case, an ultimate perfor-

mance limit has to be set, for example by a zmax(T ) curve or by a constraint z = const. or

z T = const., resp., whereby the constant should be related to an average of the figure of

merit z or z T , if direct comparison to a real material shall be made.

The number of predefined profiles can be reduced to only one, when the z T constraint is

applied, while an important fact is that this constraint may not be realistic from the point

of view of materials’ actual availability or preparation.

1.6.2 Self-compatible elements for maximum η and maximum ϕ

Throughout this section, a constant dimensionless figure of merit z T = k0 = const. is

assumed. Then, the optimal reduced efficiency is also a constant16

ηr,opt = ϕr,opt =

√
1 + z T − 1√
1 + z T + 1

=⇒ ηr0 =

√
1 + k0 − 1√
1 + k0 + 1

,

16Note that we use only one constant ηr0 for both TEG and TEC without distinction, because they are
identical ηr0 = ϕr0.
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1.6 Compatibility and optimal grading

and the ideally self-compatible performance parameters ηsc for TEG and ϕsc for TEC are

given by [159]

1− ηsc =

(
Ts

Ta

)ηr0
for TEG, and 1 +

1

ϕsc
=

(
Ts

Ta

)1/ηr0

for TEC. (1.39)

Further, we define here ηr0 = −ω0,g/ω0,c with ω0,g =
√

1 + k0 − 1 for TEG and ω0,c =

−(
√

1 + k0 + 1) for TEC. Eq. (1.30) shall be evaluated now for the optimal uopt = s. Note

that the material is represented in Eq. (1.30) by α(T ) and the product ρ(T )κ(T ); both can

be optimized based on the constraint z T = k0. Applying the compatibility factor s(g) resp.

s(c), we find

1

u
≡ 1

s(g)
=
αT

ω0,g
for TEG and

1

u
≡ 1

s(c)
=
αT

ω0,c
for TEC. (1.40)

The left-hand side of Eq. (1.30) is then for TEG

d

dT

(
1

u

)
≡ d

dT

(
1

s(g)

)
=

d

dT

(
αT

ω0,g

)
=

1

ω0,g

d

dT
(αT ) =

1

ω0,g

[
α+ T

dα

dT

]
(1.41)

and for TEC

d

dT

(
1

u

)
≡ d

dT

(
1

s(c)

)
=

d

dT

(
αT

ω0,c

)
=

1

ω0,c

d

dT
(αT ) =

1

ω0,c

[
α+ T

dα

dT

]
. (1.42)

For the right-hand side, the definition of the figure of merit gives together with the constraint

z =
α2 σ

κ
=
α2

ρ κ
=⇒ ρ κ =

α2

z
=
α2 T

k0
, (1.43)

so that we have sg ρ κ = ω0,g α/k0 for TEG, and sc ρ κ = ω0,c α/k0 for TEC.

Thus, for both cases, the differential equation for the optimum Seebeck profile α(T ) is given

by

1

ω0

[
α+ T

dα

dT

]
= −T dα

dT
− ω0 α

k0
, (1.44)
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where ω0 ≡ ω0,g for TEG and ω0 ≡ ω0,c for TEC, respectively.

Eq. (1.44) can be solved by separation of variables to get a power-law behavior for the

optimal Seebeck coefficient where αref = α(Tref):

TEG: α(T ) = αref

[
T

Tref

]kg

with

kg = −2
ω0,g

k0
=

2 (1−
√

1 + k0)

k0
= ηr0 − 1 (1.45a)

TEC: α(T ) = αref

[
T

Tref

]kc

with

kc = −2
ω0,c

k0
=

2 (1 +
√

1 + k0)

k0
=

1

ηr0
− 1 (1.45b)

As a result, this optimization strategy provides an analytical expression for the optimum

Seebeck profile α(T ) for both TEG and TEC. Note that the differences in the optimum

Seebeck profiles for TEG are marginal for different values k0 (see Fig. 1.5, left side), and

that α(T ) is only slightly curved especially for the small temperature interval (4T = 20 K)

shown for TEC in Fig. 1.5, right side. With given Seebeck coefficient, a second expression is

found for the product ρ(T )κ(T ) = Tα2(T )/k0 (see Fig. 1.6), whereas an infinite number of

profiles κ(T ) and ρ(T ) = 1/σ(T ) can be found which fulfill the optimal ρ(T )κ(T ) product.

Notice that these optimization results are valid for a homogeneous element which is described

by Eq. (1.30) based on temperature dependent material parameters. For that reason, the

results presented here are only suitable for FGM in limited circumstances when further

local contributions to the material properties are marginal. In this case, the optimal spatial

Seebeck profile α(x) = α(T (x)) is increasing with increasing coordinate x for both TEC and

TEG as the temperature profile T (x) calculated from Eq. (1.16) is increasing in the TEC

but decreasing in the TEG.

Within optimization strategy B, an optimal T (x) can be found from Eq. (1.38) together

with one optimal set of spatial profiles. Specifics are discussed here using the constraint

z(x)T (x) = k0 = const. whereby fully self-compatible performance values are given again
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1.6 Compatibility and optimal grading

Figure 1.5: Optimal profile of the Seebeck coefficient for TEG (left side, Ta = 600 K, Ts =
300 K) and TEC (right side, Ta = 280 K, Ts = 300 K) plotted over temperature
for the constraints z T = 0.6 and z T = 1 with reference value αref = 180 µV/K
for Tref = 300 K.

Figure 1.6: Optimal profile for the product ρ(T )κ(T ) = Tα2(T )/k0 for TEG (left side,
Ta = 600 K, Ts = 300 K); and TEC (right side, Ta = 280 K, Ts = 300 K) plotted
for the constraints z T = 0.6 and z T = 1 according to the optimal Seebeck
profiles shown in Fig. 1.5.

by the integrals (1.39).

Applying Eq. (1.15) for the case of optimal reduced efficiency, we get with the optimal TE

potential from Eq. (1.14)

TEG: ηr0 =
T (x)Φ′(x)

T ′(x)Φ(x)
=
α′(x)T (x)

T ′(x)α(x)
+ 1 , TEC:

1

ηr0
=
α′(x)T (x)

T ′(x)α(x)
+ 1 ,

leading to similar differential equations for both TEG and TEC

TEG:
α′(x)

α(x)
= (ηr0 − 1)

T ′(x)

T (x)
≡ kg

T ′(x)

T (x)
(1.46a)

33



1 FGM TE generator and cooler

and

TEC:
α′(x)

α(x)
=

(
1

ηr0
− 1

)
T ′(x)

T (x)
≡ kc

T ′(x)

T (x)
. (1.46b)

A simple integration gives a correlation between the optimal temperature profile and the

optimal, spatial Seebeck coefficient for both TEG and TEC (again with αref = α(Tref))

which is equivalent to Eqs. (1.45a) and (1.45b):

TEG: α(x) = αref

[
T (x)

Tref

]kg
, TEC: α(x) = αref

[
T (x)

Tref

]kc
. (1.47)

Thus, only one material profile must be predefined when using the constraint z T = const. In

fact Eq. (1.47) represents a third optimization equation within variant B whereas the search

for optimal, spatial profiles is then based on only one given profile, e.g. κ(x) for maximum

η (TEG) and σ(x) for maximum ϕ (TEC), respectively.

1.7 Summary

Fully self-compatible elements are characterized by a set of optimal material profiles whereas

optimization is done here within the framework of a 1D model with fixed length of the ac-

tive material and fixed boundary temperatures. An optimal set of spatial profiles can be

found within a thermodynamic optimization procedure together with an optimal tempera-

ture profile T (x). However, it has become clear in the last section that all profiles cannot be

found simultaneously in a direct way; at least one profile has to be predefined or appropriate

constraints established. Nevertheless, there is hope that a combination of thermodynamic

optimization based on the appropriate constraints will give a real chance to come closer to

the optimal material gradients. For a steady and monotonous optimal temperature profile,

the optimal spatial profiles can be transformed into related profiles α(T ), σ(T ) and κ(T )

in order to compare with real temperature dependent materials data. Alternatively, stacked

elements can be used to approach the optimal spatial profiles. However, it would be wrong

to reduce FGM research to investigations based on the temperature dependence of given

homogeneous or continuously graded materials.

The case of maximum cooling, i. e. determining ∆Tmax in the TEC case,17 is obtained when

17Referring to CPM, we find T ′(L) = 0 and hence u(L)→ −∞ at the heat-sink side for maximum cooling;
this divergence is not found when using optimal gradients.
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considering the coefficient of performance in the limit ϕ→ 0. It is assumed from the previ-

ous section (see Fig. 1.5) that we will get (with a monotonous T (x)) a monotonous, optimal

Seebeck profile α(x) = α [T (x)] also in the case of ∆Tmax.

We expect that the use of self-compatible elements is probably the most efficient way to

accomplish direct energy conversion in thermoelectrics.

1.8 Outlook and related problems

Further problems concern the electrical power output of a thermogenerator and the heat

pumping mode of a Peltier cooler at arbitrary ∆T .

The power output is – unlike η and ϕ – a purely electrical quantity. For this reason, the

integral kernel does not only depend on u but also on j explicitly; from results published

in [155,157] we find the integral for the net electrical power output density

pnet = − P

Ac
=

∫ Ta

Ts

KP (j, u)dT = −
∫ Ts

Ta

KP (j, u)dT (1.48)

with

KP (j, u) = jα
(

1− uα
z

)
.

Within the concept of power-related compatibility [155] the power compatibility factor has

been found to be s(P ) = z/(2α) = ασ/(2κ). Proof can be given also from Eq. (1.48) if we

evaluate the derivation of the kernel KP with respect to j

∂KP

∂j
= α

(
1− u α

z

)
− j α α

z

∂u

∂j
= α− 2u

α2

z
= 0

=⇒ uopt,P =
z

2α
= s(g,P ) , (1.49)

where ∂u/∂j = u/j has been used which follows from the definition of u.

The power compatibility factor s(P ) has been proved to be the first order approximation of

the TEG’s efficiency compatibility factor. This means that optimization strategies for power

output and η will lead (apart from minor differences) to similar results especially for small

z T values.
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The target of the optimization procedure for the power output of a TEG of fixed length is

to find not only the optimum u but also explicitly the optimum electrical current density.

Results are published in a separate paper [158], therewith continuing previous investigations

on graded thermogenerators [72,165,174,176,183].

Considering maximum performance parameters P, η and ϕ for the CPM case (averages),

there is a monotonous temperature profile as well as a monotonous u(x) over the length

of the TE element (u > 0 for TEG, but u < 0 for ϕ of a TEC). The situation changes

essentially if Peltier cooler modes close to maximum heat pumping shall be investigated.

In this case, we find a changing sign of T ′(x) because T (x) peaks in the interior of the TE

element. Clearly, based on a suitable integral formulation, this mode could also be treated in

an appropriate manner. However, it should be noticed that then ”pump up” (T ′(x) > 0) and

”pump down” (T ′(x) < 0) sections have to be treated separately. It has also to be considered

whether (following Sherman’s intention)18 y = 1/u is the more practical variable [160] when

performing calculations on TEC. This formulation may also be beneficial when examining

maximum heat pumping and the TE heater (TEH), respectively.

18Sherman used the temperature T as independent variable; thus y(T ) = −κ(T )/[j x′(T )] (see Eq. (40) in the
original paper [160]).
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